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Motivation
Species evolve in a tree-like manner.

We can only observe the species that exist today, which are the leaves of the tree.

To infer the tree, we compare DNA sequences => Distance matrix D 

G O H M R

G 1 1 0 0

O 1 0 1

H 0 0

M 1

R
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Let’s say

Dxy ≤ 0.5 means “close” (1)

Dxy > 0.5 means “distant” (0)



Motivation
Does this graph make any sense, « biologically » speaking?

Is there a tree with leafset {R,M,O,H,G} in which

the pairs that share an edge are closer than the pairs that don’t ?
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k-leaf power
A graph G is a k-leaf power if there exists a tree T such that:

- L(T) = V(G), where L(T) is the set of leaves of T

- uv ∈ E(G)  dT(u, v) ≤ k

G:

Is G is 3-leaf power?
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k-leaf power
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G:

Is G is 3-leaf power?  Yes!

A graph G is a k-leaf power if there exists a tree T such that:

- L(T) = V(G), where L(T) is the set of leaves of T

- uv ∈ E(G)  dT(u, v) ≤ k

T is called a k-leaf root of G

(or a leaf root for short)
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d(b, c) > 3

…
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k-leaf power
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T:
G:

Is G is 3-leaf power?  Yes!

Is G a 4-leaf power? Yes!

Is G a 2-leaf power?  No… (because 2-leaf powers are the P3-free graphs)

A graph G is a k-leaf power if there exists a tree T such that:

- L(T) = V(G), where L(T) is the set of leaves of T

- uv ∈ E(G)  dT(u, v) ≤ k
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k-leaf power
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T:
G:

Why the name ‘leaf power’ ?

Take the k-th power of T, keep only the leaves, the result is G.
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Leaf power

Leaf power

A graph G is a leaf power if it is a k-leaf power for some k.
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Not leaf power
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The problems
Graph theoretical perspective

- Characterize the class of k-leaf powers, for every k.

- Characterize the class of leaf powers.

Algorithmic perspective

Given a graph G, decide:

- whether G is a leaf power.

- whether G is a k-leaf power, where k is given.

- whether G is a k-leaf power, where k is fixed.



What is known?
Graph theoretical perspective

- Characterize the class of k-leaf powers, for every k.

• 2-leaf powers are the P3-free graphs, 3-leaf powers are the chordal 

(bull,dart,gem)-free graphs

• 4-leaf powers and 5-leaf powers also have a chordality + forbidden

subgraph characterization (Rautenbach, 2006, Brandstädt & Sritharan, 

2008)

• Open for k ≥ 6



What is known?
Graph theoretical perspective

- Characterize the class of leaf powers.

• Leaf powers are strongly chordal (chordal + sun-free)

• Some subclasses of strongly chordal graphs are known to be leaf

powers (ptolemaic, interval, rooted directed path, strictly chordal)

• (Brandstädt, Hundt, Mancini, Wagner, Kennedy, Lin, Yan, 2010 +/- a 

few years)

• Only 7 strongly chordal graphs are known to not be leaf powers

(Nevries and Rosenke, 2015)

• Conjecture: a graph G is a leaf power iff it is strongly chordal and does

not contain one of these 7 graphs (as an induced subgraph).



Strongly chordal graphs
A graph is chordal is every cycle on at least 4 vertices has a chord.

A graph is strongly chordal if it is chordal and sun-free.

4-sun: start with a K4, add

‘spikes’ around the clique. 
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What is known?
Algorithmic perspective

Given a graph G, decide:

- whether G is a leaf power.

• The complexity is open

- whether G is a k-leaf power, where k is given.

• The complexity is open.

- whether G is a k-leaf power, where k is fixed.

• In P for k ≤ 5, open for k ≥ 6.



In this work
We show that leaf powers cannot be characterized by strongly chordality + a 

finite set of forbidden subgraphs.

- There exists an infinite family Gr,q of (minimal) strongly chordal graphs that

are not leaf powers.

- We establish a connection with leaf powers and quartet compatibility.

Deciding if a chordal graph G is Gr,q-free is NP-hard.

G3,4
Gr,q



Alternating cycles
A sequence of vertices x0,y0,x1,y1, …,xc-1,yc-1 forms an alternating cycle if xiyi

share an edge and yixi+1 do not (for all i, addition modulo c).  The other edges

could be anything.

x0 y0

x1

y1

y2 x2

y3

x3

8-alternating cycle

Non-edges



4-alternating cycles and quartets
Lemma: if G is a leaf power and G contains the 4-alternating cycle a,b,c,d, then

any leaf root for G must contain the ab|cd quartet.

• Meaning that in T, the a-b path and the c-d path share no vertex.
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d

a

b

a b

d c



Why leaf powers are chordal?
A graph is chordal if all of its cycles on ≥ 4 vertices have a chord.

a b

d

ce

If G has this as an induced subgraph,

we have the alternating cycles

a,b,d,c => ab|cd quartet

b,c,e,d => bc|de quartet

c,d,a,e => ae|cd quartet

d,e,b,a => ab|de quartet
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Why leaf powers are chordal?
A graph is chordal if all of its cycles on ≥ 4 vertices have a chord.

c

d

a

b

a b

d

ce

If G has this as an induced subgraph,

we have the alternating cycles

a,b,d,c => ab|cd quartet

b,c,e,d => bc|de quartet

c,d,a,e => ae|cd quartet  … STUCK 

d,e,b,a => ab|de quartet

e

No tree can satisfy the 4-alternating cycles of

non-chordal graphs => 

cycles are forbidden induced subgraphs.



Why leaf powers are strongly chordal?
A graph is strongly chordal if it is chordal and sun-free.

4-sun: start with a K4, add

‘spikes’ around the clique. 
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Why leaf powers are strongly chordal?
A graph is strongly chordal if it is chordal and sun-free.

4-sun: start with a K4, add

‘spikes’ around the clique. 

a b

c d

e

f g

h

ae|ch + ae|dh + be|ch + be|dh => ab|cd

af|bg + af|dg + cf|bg + cf|dg => ac|bd

No tree can contain both these quartets => 

4-suns are forbidden induced subgraphs of 

leaf powers.

Same argument works for k-suns, k ≥ 4.

Does not work for k = 3 (need to consider

6-alternating cycles).





New examples of non-leaf powers
Theorem (Shutters, Vakati, Fernandez-Baca, 2012)

For any integer r, q ≥ 3, the set of quartets

Q = {aiai+1 | bjbj+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ q} ∪ {a1b1 | arbq} is incompatible.

Moreover, removing any quartet from Q makes it compatible.

Goal: for each r, q ≥ 3, construct a strongly chordal graph Gr,q whose required

set of quartets is Q, such that Gr,q – v is a leaf power, for any v.

=> Provides an infinite family of minimal non-leaf powers that are strongly

chordal.



New examples of non-leaf powers
Theorem (Shutters, Vakati, Fernandez-Baca, 2012)

For any integer r, q ≥ 3, the set of quartets

Q = {aiai+1 | bjbj+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ q} ∪ {a1b1 | arbq} is incompatible.

Moreover, removing any quartet from Q makes it compatible.

G3,4 Gr,q

aixi | bjyj + aixi | bj+1yj + ai+1xibjyj + ai+1xibj+1 => aiai+1 | bjbj+1

And the 4-alternating cycle a1,b1,bq,ar => a1b1 | arbq



New examples of non-leaf powers
Theorem (Shutters, Vakati, Fernandez-Baca, 2012)

For any integer r, q ≥ 3, the set of quartets

Q = {aiai+1 | bjbj+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ q} ∪ {a1b1 | arbq} is incompatible.

Moreover, removing any quartet from Q makes it compatible.

G3,4 Gr,q

• Can be shown to be strongly chordal by a simple elimination ordering.

• Minimality requires constricting a leaf root for each Gr,q - v



Gr,q – v is a leaf power

Leaf root for Gr,q – xi

(see paper for details)



Detecting copies of Gr,q in a graph
Given a graph G, can we detect whether it contains a copy of Gr,q ?



Detecting copies of Gr,q in a graph
Given a graph G, can we detect whether it contains a copy of Gr,q ?

Theorem: deciding if G contains an induced Gr,q for some r,q ≥ 3 is NP-hard, 

even if G is a chordal graph.

(reduction from

Does there exist a chordless cycle between two specified vertices s, t in a 

bipartite graph such that s, t have degree two and share no neighbor and are in 

the same part of the bipartition).

Gr,q-freeness is the first known property of leaf powers that we do not (yet) know 

how to check in polynomial time.

Could Gr,q be, conceivably, used to show the hardness of recognizing leaf

powers?



Conclusion

• Can alternating cycles provide more insight on the class of leaf powers?

• Conjecture: a graph G is a leaf-power iff there is a tree T that can satisfy

each of its (4,6)-alternating cycles. 

• Are there other strongly chordal non-leaf powers?  (short answer: yes)

• Can we characterize them?

• Can we find copies of Gr,q in strongly chordal graphs?

• Still open: recognize k-leaf powers for fixed k

• k-leaf powers have bounded clique-width

• Unlike leaf powers, k-leaf powers may allow a characterization by strong

chordality + a finite set of forbidden subgraphs.



Alternating cycles

8-alternating cycle

Non-edges

A tree T can satisfy an alternating cycle C = (x0,y0,x1,y1, …,xc-1,yc-1) if the edges of 

T can be weighted so that there is a k such that dT(xi, yi) ≤ k and dT(yi, xi+1) > k 

(for all i)

- In words, T can be a leaf power if we only care about the edges/non-edges of C.
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y1

y2 x2

y3

x3



Alternating cycles

8-alternating cycle

Non-edges

x1
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x2

y0
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y1

x3 y3

x0 y0

x1

y1

y2 x2

y3

x3

A tree T can satisfy an alternating cycle C = (x0,y0,x1,y1, …,xc-1,yc-1) if the edges of 

T can be weighted so that there is a k such that dT(xi, yi) ≤ k and dT(yi, xi+1) > k 

(for all i)

- In words, T can be a leaf power if we only care about the edges/non-edges of C.



Alternating cycles

8-alternating cycle

Non-edges

1 1

1 1

1
1

1

1

1

1 1 k = 2

(easy right?)

A tree T can satisfy an alternating cycle C = (x0,y0,x1,y1, …,xc-1,yc-1) if the edges of 

T can be weighted so that there is a k such that dT(xi, yi) ≤ k and dT(yi, xi+1) > k 

(for all i)

- In words, T can be a leaf power if we only care about the edges/non-edges of C.

x0 y0

x1

y1

y2 x2

y3

x3

x1
y2

x2

y0
x0

y1

x3 y3



Alternating cycles

8-alternating cycle

Non-edges
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Alternating cycles

8-alternating cycle

Non-edges
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k = 105
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What’s the point?
Proposition: if G is a leaf power, then there exists a tree T that can satisfy

every alternating cycle of G.

(Proof: if G is a leaf power, any leaf root T for G must, in particular, satisfy the 

edges/non-edges of the alternating cycles of G.)
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What’s the point?
Proposition: if G is a leaf power, then there exists a tree T that can satisfy

every alternating cycle of G.

(Proof: if G is a leaf power, any leaf root T for G must, in particular, satisfy the 

edges/non-edges of the alternating cycles of G.)

As it turns out, every graph that is known to not be a leaf power fails to meet

this requirement.

• Conjecture: a graph G is a leaf power if and only if there exists a tree T that

can satisfy every alternating cycle of G.

In fact, every known non-leaf power has no tree that can satisfy all of its 4-

alternating cycles, with one single exception: the 3-sun, for which no tree can

satisfy its 4 and 6-alternating cycles.

The above proposition can also be used to build new examples of non-leaf

powers.



Alternating cycles

8-alternating cycle

Non-edges

x0 y0
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y0x0
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y3 x1

For each edge xy of C (e.g. x0y0), mark the edges of T on the x-y path by ‘+’

For each non-edge xy of C (e.g. y0x1), mark the edges of T on the x-y path by ‘-’

Lemma

The tree T can satisfy C iff it has some edge marked by strictly more ‘-’ than ‘+’



Alternating cycles

8-alternating cycle

Non-edges
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For each edge xy of C (e.g. x0y0), mark the edges of T on the x-y path by ‘+’

For each non-edge xy of C (e.g. y0x1), mark the edges of T on the x-y path by ‘-’

Lemma

The tree T can satisfy C iff it has some edge marked by strictly more ‘-’ than ‘+’
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4-alternating cycles and quartets
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