WHOM TO BEFRIEND TO INFLUENCE PEOPLE

Manuel Lafond (University of Montreal)Lata Narayanan (Concordia University)Kangkang Wu (Concordia University)

Introduction

MinLinks problem: diffusion by giving links

Hardness of MinLinks

Basic idea behind the reduction

Some cases we can handle

Trees, cycles, cliques

Conclusion

GOAL: make a network adopt a product/idea through the word-of-mouth effect, starting with a **small set of influencers**.

QUESTION: how do we find this small set of influencers?

Nodes = people

Edges = friendship links

The model

Each individual has a different given threshold for activation – some people are easily influenced, while others are more resilient to new ideas.

Unit weights assumption: each friend of a given individual has the same influence.

Limited external incentives: the external influencer (i.e. Alice) has the same weight as every individual – Alice can only reduce a person's threshold by 1.

The MinLinks problem

Given: a network G = (V, E, t)

where t(v) is an integer defining the threshold node v

Find: a *pervading link set* S of minimum size i.e. a subset S of V such that adding a link to each node in S activates the entire network.

k-target set problem: choose k nodes that influence a maximum number of nodes upon activation.

- Question posed by Domingos and Richardson (2001).
- Modeled as a discrete optimization problem by Kempe, Kleinberg, Tardos (2003).
 - Probabilistic model of thresholds/influence, the goal is to maximize expected number of activated nodes.

NP-hard, but admits good constant factor approximation.

Minimum target set problem: activate a minimum number of nodes to activate the whole network.

- Hard to approximate within a polylog factor (Chen, 2004).
- Admits FPT algorithm for graphs of bounded treewidth (Ben-Zwi & al., 2014).

Some issues with the minimum target set:

- A node can be activated at cost 1, regardless of its threshold. But some people cannot be influenced by external incentives only.
- No partial incentive can be given: we either activate a node, or we don't. (In our work, we allow nodes to be activated by a mix of internal and external influences.)

Minimum target set problem

Demaine & al. (2015) introduce a model allowing partial incentives.

- Maximization of influence using a fixed budget.
- Thresholds are chosen uniformly at random.
- Any amount of external influence can be applied to a node.

Feasibility of MinLinks

Given a network G, can Alice activate the whole network?

This can easily be checked in polynomial time (actually O(|E(G)|) time):

- give a link to everyone
- propagate the influence
- check if the network is activated

Reduction from set cover.

Set cover

Given: a ground set U of size m, and a collection $S = \{S_1, ..., S_n\}$ of subsets of U;

Find: a subcollection S' of S such that each element of U is in some set of S'.

Constructing a MinLinks instance from S:

- 1) To each element of U corresponds a node of G.
- 2) To each set S_i corresponds a node of G which activates the elements of S_i .
- 3) If each element of U gets activated, the whole network gets activated.

Objective: S has a set cover of size k iff k links are enough the corresponding MinLinks instance.

This reduction can be extended to show the hardness of this restricted version of MinLinks:

- all nodes have threshold 1 or 2
- each node has at most 3 neighbors

Since SetCover is O(log n)-hard to approximate, and we preserve the instance size and optimality value, MinLinks is also O(log n)-hard to approximate.

Trees

Theorem: if T has a pervading link set, then for any node v, there is an optimal solution in which v gets a link.

Trees

Theorem: if T has a pervading link set, then

for any node v, there is an optimal solution in which v gets a link.

Leads to the following O(n) algorithm:

- Give a link to any leaf v of T
- If v gets activated, propagate its influence
- Remove v and all activated nodes
- Repeat on each component

Trees

Theorem: The minimum number of links required to activate a tree T is

 $ML(T) = 1 + \sum_{v \text{ in } V(T)} (t(v) - 1)$

Lemma: a cycle has a pervading link set iff

- $t(v) \le 3$ for every node
- there is at least one node of threshold 1
- between any two consecutive nodes of threshold 3, there is at least one node of threshold 1

Lemma: a cycle has a pervading link set iff

- $t(v) \le 3$ for every node
- there is at least one node of threshold 1
- between any two consecutive nodes of threshold 3, there is at least one node of threshold 1

Theorem: if a cycle C has a pervading link set, then for any node v of threshold 1, there is an optimal solution in which v gets a link.

Cycles

Leads to the following O(n) algorithm:

- Give a link to a threshold 1 node
- Propagate the influence and remove activated nodes
- The result is a path. Apply the tree algorithm on it.

Theorem: The minimum number of links required to activate a cycle C is

 $ML(C) = max(1, \Sigma_{v \text{ in } V(T)} (t(v) - 1))$

Cliques

Theorem: suppose that G is a clique. Order the vertices $(v_1, v_2, ..., v_n)$ by threshold in increasing order. Then G has a pervading link set iff $t(v_i) \le i$ for each i.

Cliques

Theorem: suppose that G is a clique. Order the vertices $(v_1, v_2, ..., v_n)$ by threshold in increasing order. Then G has a pervading link set iff $t(v_i) \le i$ for each i.

Leads to the following O(n) algorithm:

- Give any threshold 1 node a link.
- Propagate the influence, remove activated nodes.
- Repeat on the resulting clique until nothing remains.

Cliques

Theorem: suppose that G is a clique. Order the vertices $(v_1, v_2, ..., v_n)$ by threshold in increasing order.

Then the minimum number of links required to activate G is equal to the number of v_i such that $t(v_i) = i$.

Conclusion

What if we allow multiple influencers?

Allows buying multiple links to a single node Given k influencers, how many links are needed?

What if the "link budget" is limited? Maximize the number of activated nodes by using k links. NP-Hardness follows from our results, but approximability/FPT is unknown.