WHOM TO BEFRIEND TO INFLUENCE PEOPLE

Manuel Lafond (University of Montreal)
Lata Narayanan (Concordia University)
Kangkang Wu (Concordia University)

The plan

Introduction

MinLinks problem: diffusion by giving links

Hardness of MinLinks

Basic idea behind the reduction

Some cases we can handle Trees, cycles, cliques

Conclusion

Viral marketing

Influencers

GOAL: make a network adopt a product/idea through the word-of-mouth effect, starting with a small set of influencers.

QUESTION: how do we find this small set of influencers?

Alice wants to be loved by all

Nodes $=$ people
Edges = friendship links

Alice wants to be loved by all

Influence threshold:

once 2 friends tell this node how great Alice is, it will:

- become "activated"
- tell its friends how great Alice is

Alice wants to be loved by all

Influence threshold:

once 2 friends tell this node how great Alice is, it will:

- become "activated"
- tell its friends how great Alice is

Alice can buy links to friends, and tell them how great she is.

GOAL: activate the entire network with a minimum number of links.

Alice wants to be loved by all

Alice wants to be loved by all

Adding a link to these two individuals activates the whole network.

They form what we call a pervading link set.

The model

Each individual has a different given threshold for activation - some people are easily influenced, while others are more resilient to new ideas.

Unit weights assumption: each friend of a given individual has the same influence.

Limited external incentives: the external influencer (i.e. Alice) has the same weight as every individual - Alice can only reduce a person's threshold by 1.

The MinLinks problem

Given: a network $G=(V, E, t)$
where $t(v)$ is an integer defining the threshold node v

Find: a pervading link set S of minimum size
i.e. a subset S of V such that adding a link to each node in S activates the entire network.

Related work

k-target set problem: choose k nodes that influence a maximum number of nodes upon activation.

- Question posed by Domingos and Richardson (2001).
- Modeled as a discrete optimization problem by Kempe, Kleinberg, Tardos (2003).
Probabilistic model of thresholds/influence, the goal is to maximize expected number of activated nodes.
NP-hard, but admits good constant factor approximation.

Related work

Minimum target set problem: activate a minimum number of nodes to activate the whole network.

- Hard to approximate within a polylog factor (Chen, 2004).
- Admits FPT algorithm for graphs of bounded treewidth (BenZwi \& al., 2014).

Some issues with the minimum target set:

- A node can be activated at cost 1, regardless of its threshold. But some people cannot be influenced by external incentives only.
- No partial incentive can be given: we either activate a node, or we don't. (In our work, we allow nodes to be activated by a mix of internal and external influences.)

Related work

Minimum target set problem

Related work

Demaine \& al. (2015) introduce a model allowing partial incentives.

- Maximization of influence using a fixed budget.
- Thresholds are chosen uniformly at random.
- Any amount of external influence can be applied to a node.

Feasibility of MinLinks

Given a network G, can Alice activate the whole network?
This can easily be checked in polynomial time (actually $\mathrm{O}(|\mathrm{E}(\mathrm{G})|)$ time):

- give a link to everyone
- propagate the influence
- check if the network is activated

Hardness of MinLinks

Reduction from set cover.

Set cover

Given: a ground set U of size m , and a collection $S=\left\{S_{1}, \ldots, S_{n}\right\}$ of subsets of U;
Find: a subcollection S^{\prime} of S such that each element of U is in some set of S^{\prime}.

Hardness of MinLinks

Constructing a MinLinks instance from S:

1) To each element of U corresponds a node of G.
2) To each set S_{i} corresponds a node of G which activates the elements of S_{i}.
3) If each element of U gets activated, the whole network gets activated.

Objective: S has a set cover of size k
iff k links are enough the corresponding MinLinks instance.

Hardness of MinLinks

Hardness of MinLinks

This reduction can be extended to show the hardness of this restricted version of MinLinks:

- all nodes have threshold 1 or 2
- each node has at most 3 neighbors

Since SetCover is O(log n)-hard to approximate, and we preserve the instance size and optimality value, MinLinks is also $\mathrm{O}(\log \mathrm{n})$-hard to approximate.

Set nodes => binary trees

Element nodes => binary trees

Super activator => binary trees

Trees

Theorem: if T has a pervading link set, then for any node \mathbf{v}, there is an optimal solution in which \mathbf{v} gets a link.

Trees

Theorem: if T has a pervading link set, then
for any node \mathbf{v}, there is an optimal solution in which \mathbf{v} gets a link.
Leads to the following $\mathrm{O}(\mathrm{n})$ algorithm:

- Give a link to any leaf v of T
- If v gets activated, propagate its influence
- Remove v and all activated nodes
- Repeat on each component

Trees

Theorem: The minimum number of links required to activate a tree T is

$$
M L(T)=1+\sum_{v i n v(T)}(t(v)-1)
$$

Cycles

Lemma: a cycle has a pervading link set iff
$-\mathrm{t}(\mathrm{v}) \leq 3$ for every node

- there is at least one node of threshold 1
- between any two consecutive nodes of threshold 3 , there is at least one node of threshold 1

Cycles

Lemma: a cycle has a pervading link set iff
$-\mathrm{t}(\mathrm{v}) \leq 3$ for every node

- there is at least one node of threshold 1
- between any two consecutive nodes of threshold 3, there is at least one node of threshold 1

Theorem: if a cycle C has a pervading link set, then for any node v of threshold 1 , there is an optimal solution in which v gets a link.

Cycles

Leads to the following $\mathrm{O}(\mathrm{n})$ algorithm:

- Give a link to a threshold 1 node
- Propagate the influence and remove activated nodes
- The result is a path. Apply the tree algorithm on it.

Cycles

Theorem: The minimum number of links required to activate a cycle C is
$M L(C)=\max \left(1, \quad \sum_{\mathrm{v} \text { in } \mathrm{V}(\mathrm{T})}(\mathrm{t}(\mathrm{v})-1)\right)$

Cliques

Theorem: suppose that G is a clique. Order the vertices $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ by threshold in increasing order. Then G has a pervading link set iff $t\left(v_{i}\right) \leq i$ for each i.

Cliques

Theorem: suppose that G is a clique. Order the vertices $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ by threshold in increasing order. Then G has a pervading link set iff $t\left(v_{i}\right) \leq i$ for each i.

Leads to the following $\mathrm{O}(\mathrm{n})$ algorithm:

- Give any threshold 1 node a link.
- Propagate the influence, remove activated nodes.
- Repeat on the resulting clique until nothing remains.

Cliques

Theorem: suppose that G is a clique. Order the vertices $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ by threshold in increasing order.

Then the minimum number of links required to activate G is equal to the number of v_{i} such that $t\left(v_{i}\right)=i$.

Conclusion

What if we allow multiple influencers?
Allows buying multiple links to a single node Given k influencers, how many links are needed?

What if the "link budget" is limited?
Maximize the number of activated nodes by using k links.
NP-Hardness follows from our results, but approximability/FPT is unknown.

