
RECONCILING MULTIPLE GENES TREES VIA

SEGMENTAL DUPLICATIONS AND LOSSES

Riccardo Dondi1, Manuel Lafond2, Céline Scornavacca3

1 Università degli Studdi di Bergamo, 2 Université de
Sherbrooke, 3 ISEM, Université de Montpellier

The plan

In this talk we…

 …reconcile gene trees with species trees, but:

 there are many gene trees, and

 Duplications/losses can affect several genes.

 …detect whole genome duplications.

 …try to simulate genome evolution with segmental

events.

Reconciliation

A B C

SG

Reconciliation identifies duplication, speciation and

loss events in a gene tree G.

a1 c1 a2 b2

Species treeGene tree

Notation tip: gene name = lowercase species

Reconciliation

A B C

Reconciliation identifies duplication, speciation and

loss events in a gene tree G.

G

a1 c1 a2 b2

Duplication

Speciation

Species treeGene tree

S

Reconciliation

A B C

Reconciliation identifies duplication, speciation and

loss events in a gene tree G.

G

a1 c1 a2 b2

c2

b1

Losses

Species treeGene tree

S

Reconciliation

A B C

Reconciliation identifies duplication, speciation and

loss events in a gene tree G.

G

a1 c1 a2 b2

c2

b1

How do we find

there?

Species treeGene tree

S

HumanOrangutanGibbons Mouse Rat

Super-mammal

Super-primate
Super-rodent

RPGR

Human-utan

LCA Mapping

A B C

G

a1 c1 a2 b2

c2

b1

How do we find

there?

LCA Mapping!

Species treeGene tree

S

LCA Mapping

A B C

Map each ancestral gene to the species that is the lowest
common ancestor (LCA) of the descending mapped species.

G

a1 c1 a2 b2

Species treeGene tree

S

LCA Mapping

A B C

Map each ancestral gene to the species that is the lowest
common ancestor (LCA) of the descending mapped species.

G

a1 c1 a2 b2

Species treeGene tree

S

lca(A, C)
lca(A, B)

lca(A, B, C)

LCA Mapping

A B C

Map each ancestral gene to the species that is the lowest
common ancestor (LCA) of the descending mapped species.

G

a1 c1 a2 b2

Species treeGene tree

S

lca(A, C)
lca(A, B)

lca(A, B, C)

LCA Mapping

A B C

G

a1 c1 a2 b2

Species treeGene tree

S

Map each ancestral gene to the species that is the lowest

common ancestor (LCA) of the descending mapped species.

 Rule: a node of G must be a Dup if it maps to the same species as a child.

LCA Mapping

A B C

Map each ancestral gene to the species that is the lowest
common ancestor (LCA) of the descending mapped species.

 Rule: a node of G must be a Dup if it maps to the same species as a child.

 Each copy should be present in each species – otherwise, losses.
G

a1 c1 a2 b2

c2

b1

Species treeGene tree

S

LCA Mapping

A B C

Now let’s have more than one gene tree.

a1 c1 a2 b2 a3 b3 b4

D

E

LCA Mapping

A B C

Now let’s have more than one gene tree.

a1 c1 a2 b2 a3 b3 b4

D

E

E D D

E D

LCA Mapping

A B C

Now let’s have more than one gene tree.

a1 c1 a2 b2

c2

b1 a3 b3 b4

D

E

a4

E

E

D D

D

LCA Mapping

A B C

Now let’s have more than one gene tree.

a1 c1 a2 b2

c2

b1 a3 b3 b4

D

E

a4

E

E

D D

D

Maybe these duplications are the same! (e.g. a block duplication of a segment)

LCA Mapping

A B C

Now let’s have more than one gene tree.

a1 c1 a2 b2

c2

b1 a3 b3 b4

D

E

a4

E

E

D D

D

Maybe these duplications are the same! (e.g. a block duplication of a segment)

If so, this Dup must have occurred in the E species.

=> We must remap the D duplication.

LCA Mapping

A B C

Now let’s have more than one gene tree.

a1 c1 a2 b2

c2

b1 a3 b3 b4

D

E

a4

E

E

D D

E

Maybe these duplications are the same! (e.g. a block duplication of a segment)

If so, this Dup must have occurred in the E species.

=> We must remap the D duplication.

LCA Mapping

A B C

Now let’s have more than one gene tree.

a1 c1 a2 b2

c2

b1 a3 b3 b4

D

E

a4

E

E

D D

E

Maybe these duplications are the same! (e.g. a block duplication of a segment)

If so, this Dup must have occurred in the E species.

=> We must remap the D duplication.

c4
c3

1 DUP, 5 LOSSES (before, we had 2 DUPS, 3 LOSSES)

Reconciling with segmental Dups

 If we know the mapping, computing the number of

segmental Dups is easy.

 Losses are also easy to compute.

 Challenge: find the best mapping.

Reconciling with segmental Dups

 Question: given a fixed mapping, how do we

minimize the number of segmental Dups?

Reconciling with segmental Dups

 Question: given a fixed mapping, how do we

minimize the number of segmental Dups?

 Any two Dups unrelated by ancestry + mapped to the

same species could potentially be « the same »

Reconciling with segmental Dups

 Question: given a fixed mapping, how do we

minimize the number of segmental Dups?

 Any two Dups unrelated by ancestry + mapped to the

same species could potentially be « the same »

Reconciling with segmental Dups

 Question: given a fixed mapping, how do we

minimize the number of segmental Dups?

 Any two Dups unrelated by ancestry + mapped to the

same species could potentially be « the same »

Reconciling with segmental Dups

 Question: given a fixed mapping, how do we

minimize the number of segmental Dups?

 Any two Dups unrelated by ancestry + mapped to the

same species could potentially be « the same »

Reconciling with segmental Dups

 Question: given a fixed mapping, how do we

minimize the number of segmental Dups?

 Any two Dups unrelated by ancestry + mapped to the

same species could potentially be « the same »

Reconciling with segmental Dups

 Question: given a fixed mapping, how do we

minimize the number of segmental Dups?

 Any two Dups unrelated by ancestry + mapped to the

same species could potentially be « the same »

Reconciling with segmental Dups

 Question: given a fixed mapping, how do we

minimize the number of segmental Dups?

 Any two Dups unrelated by ancestry + mapped to the

same species could potentially be « the same »

Reconciling with segmental Dups

 Question: given a fixed mapping, how do we

minimize the number of segmental Dups?

 Any two Dups unrelated by ancestry + mapped to the

same species could potentially be « the same »

 # segmental Dups in f = height of f forest

Reconciling with segmental Dups

 Given: a set of gene trees G = {G1, … Gk} and a

species tree S

 Find: a mapping of the nodes of G that minimizes:

 the sum of Dup heights.

 the sum of Dup heights + the number of losses.

A B Ca1 c1 a2 b2 a3 b3 b4

G1 G2
S

Reconciling with segmental Dups

 Given: a set of gene trees G = {G1, … Gk} and a

species tree S

 Find: a mapping of the nodes of G that minimizes:

 the sum of Dup heights.

 δ * (sum of Dup heights) + λ * (number of losses)

A B Ca1 c1 a2 b2 a3 b3 b4

G1 G2
S

Reconciling with segmental Dups

 A node mapped above its LCA mapping must be a

Dup.

 Preserve time-consistency in mapping.

A B C

a1 b1 c1

D

E

F

H

e

f

Reconciling with segmental Dups

 A node mapped above its LCA mapping must be a

Dup.

 Preserve time-consistency in mapping.

A B C

a1 b1 c1

D

E

F

H

h

f

Reconciling with segmental Dups

 A node mapped above its LCA mapping must be a

Dup.

 Preserve time-consistency in mapping.

A B C

a1 b1 c1

D

E

F

H

h

f

Reconciling with segmental Dups

 A node mapped above its LCA mapping must be a

Dup.

 Preserve time-consistency in mapping.

A B C

a1 b1 c1

D

E

F

H

h

h

Reconciling with segmental Dups

 A node mapped above its LCA mapping must be a

Dup.

 Preserve time-consistency in mapping.

A B C

a1 b1 c1

D

E

F

H

h

h

Reconciling with segmental Dups

 A node mapped above its LCA mapping must be a

Dup.

 Preserve time-consistency in mapping.

 Remapping a node can create a chain of Dups

above it.

A B C

a1 b1 c1

D

E

F

H

h

h

Some people worked on this

 Episode Clustering

 Minimize # of species that underwent Dup, given that remapping
a node cannot force remapping its parent.

 Can be solved exactly in poly-time.

 [Cotton & Page, Biocomputing 2002], [Burleigh & al., RECOMB
2008]

 Minimize Dup heights, under the same constraints.

 Heuristics [Guigó & al., Mol Phylo Evol 1996]

 Exact [Bansal & Eulenstein, Bioinformatics 2008], [Luo & al., TCBB
2011]

 Other type of contraints [Paszek & Gorecki, TCBB 2017]

 Our contributions: get rid of constraints + incorportate losses.

The case of λ ≥ δ

 λ ≥ δ => losses are worse than Dups.

The case of λ ≥ δ

 λ ≥ δ => losses are worse than Dups.

 Remapping an ancestral node to a higher species

will always create additional losses.

The case of λ ≥ δ

 λ ≥ δ => losses are worse than Dups.

 Remapping an ancestral node to a higher species

will always create additional losses.

b3 b4

a4

D

D

a3 A B C

D

E

The case of λ ≥ δ

 λ ≥ δ => losses are worse than Dups.

 Remapping an ancestral node to a higher species

will always create additional losses.

b3 b4

a4

D

D

b3 b4

a4

D
c4

c3

E

a3 a3 A B C

D

E

The case of λ ≥ δ

 λ ≥ δ => losses are worse than Dups.

 Remapping an ancestral node to a higher species

will always create additional losses.

 Remapping saves at most one Dup, but creates at

least one loss => not really worth it.

b3 b4

a4

D

D

b3 b4

a4

D
c4

c3

E

a3 a3 A B C

D

E

The case of λ ≥ δ

 Theorem: when λ ≥ δ, the usual LCA mapping yields

an optimal reconciliation. It is also the unique

optimal reconciliation if λ > δ.

b3 b4

a4

D

D

b3 b4

a4

D
c4

c3

E

a3 a3 A B C

D

E

The case of λ = 0

 When λ = 0, we only care about the sum of Dup

heights.

 Complexity was left opened by Paszek & Gorecki.

 Theorem: Finding an optimal reconciliation with

segmental Dups when λ = 0 is NP-hard.

The case of λ = 0

 When λ = 0, we only care about the sum of Dup

heights.

 Complexity was left opened by Paszek & Gorecki.

 Theorem: Finding an optimal reconciliation with

segmental Dups when λ = 0 is NP-hard.

 Reduction from Vertex Cover

 7-page proof, see paper

Tree-gadget for an

edge xixj

The case of λ = 0

 Theorem: finding an optimal reconciliation with

segmental Dups when λ = 0 is NP-hard, even if

only one gene tree is given in the input.

The case of λ = 0

 Theorem: finding an optimal reconciliation with

segmental Dups when λ = 0 is NP-hard, even if

only one gene tree is given in the input.

 Reduction from reconciliation with many gene trees: just

join all the gene trees under many speciations.

An FPT algorithm for λ < δ

 An O((δ/λ)d + 1 n) time algorithm.

 d is the sum of Dup heights in an optimal solution

 e.g. when δ = 3, λ = 2, we get a O(1.5d + 1 n)

algorithm.

An FPT algorithm for λ < δ

 When we remap a Dup node up by k species, we

create at least k new losses.

B

B1

B2

C

A

b

b b

An FPT algorithm for λ < δ

 When we remap a Dup node up by k species, we

create at least k new losses.

b

b

c

b b

B

B1

B2

C

Ab

An FPT algorithm for λ < δ

 When we remap a Dup node up by k species, we

create at least k new losses.

b

b

c

b b

B

B1

B2

C

Ab

c

b1

b2

An FPT algorithm for λ < δ

 When we remap a Dup node up by k species, we

create at least k new losses.

b

b

c

b b

B

B1

B2

C

Ab

c c

b1

b2 b2

b1

An FPT algorithm for λ < δ

 When we remap a Dup node up by k species, we

create at least k new losses.

 If we remap a Dup node up by more than δ/λ
species, we save 1 Dup but create > δ/λ losses.

b

b

c

b b

B

B1

B2

C

Ab

c c

b1

b2 b2

b1

An FPT algorithm for λ < δ

 When we remap a Dup node up by k species, we

create at least k new losses.

 If we remap a Dup node up by more than δ/λ
species, we save 1 Dup but create > δ/λ losses.

 Cost changes by > -δ + λ * (δ/λ) = 0.

 Not worth it.
b

b

c

b b

B

B1

B2

C

Ab

c c

b1

b2 b2

b1

An FPT algorithm for λ < δ

 Branching algorithm:

 Take a Dup node x mapped to species s under the LCA

mapping.

 Branch into the δ/λ possible ways of remapping x to

an ancestor s’ of s.

◼ Each time we branch, Dup heights increase by 1.

◼ Must also remap other nodes who « want » to remap to s’.

An FPT algorithm for λ < δ

 Branching algorithm:

 Take a Dup node x mapped to species s under the LCA

mapping.

 Branch into the δ/λ possible ways of remapping x to

an ancestor s’ of s.

◼ Each time we branch, Dup heights increase by 1.

◼ Must also remap other nodes who « want » to remap to s’.

 Search tree of degree δ/λ and height at most d.

◼ O((δ/λ)d + 1 n) complexity

Experiments

 We implemented the FPT algorithm.

 https://github.com/manuellafond/Multrec

 We applied it on 2 datasets:

 Yeast species from [Butler & al., Nature, 2009]

◼ 16 species, 2379 gene trees

 Eukaryotes from [Guigo & al., Mol Phylo Evo, 1996]

◼ 16 species, 53 gene trees

https://github.com/manuellafond/Multrec

Experiments

 In the 2379 yeast trees, we infer a segmental Dup

with 216 genes (δ = 3, λ = 2).

 Located here

Experiments

 In the 2379 yeast trees, we infer a segmental Dup

with 216 genes (δ = 3, λ = 2).

 Located here

 Coincides with WGD

found using synteny in

[Kellis, Birren & Lander,

Nature, 2004]

Nodes 7,6,13,2 had seg-

mental Dup with 190, 157,

148 and 136 genes.

Experiments

 In the 53 Eukaryote gene trees.

 ExactMGD [Bansal & Eulenstein, Bioinf, 2008] finds a

solution with 5 segmental Dups

◼ Does not allow speciations to become duplications.

 We find a solution with 4 segmental Dups

◼ By setting δ > 61, λ = 1

◼ All segmental Dups found in [Guigo & al., 1996] are

confirmed, EXCEPT ONE.

Experiments

 In the 53 Eukaryote gene trees.

In our solutions, no Dup maps

here

(Tetrapoda)

Conclusion

 Open problems

 Complexity when δ/λ is a constant?

 Approximation algorithms?

 Modeling segmental losses.

 Incorporate lateral transfer.

 More practical application (e.g. detect WGD in

plants)

Reconciliation

a b c d

S

c2

G

Reconciliation identifies duplication, speciation and

loss events in a gene tree G.

Duplication

Speciation

a1 b1 c1 d2

Species treeGene tree

Reconciliation

a b c d

S

c2

G

Reconciliation identifies duplication, speciation and

loss events in a gene tree G.

Apparent

Non-apparent

a1 b1 c1 d2

Species treeGene tree

Reconciliation

a b c d

S

a1 b1 c1 d2 c2

G

Reconciliation identifies duplication, speciation and

loss events in a gene tree G.

Losses

c

d

(ab)

(ab)

d

Species treeGene tree

Reconciliation

a b c d

S

a1 b1 c1 d2 c2

G

Reconciliation identifies duplication, speciation and

loss events in a gene tree G.

Possible reconciliation costs : #dups, #dups + #losses

c

d
ab

d

ab

TP53 gene tree(s)

PhylomeDB

Ensembl

HOGENOM

TreeFam

TreeFam

TP53 gene tree(s)

PhylomeDB

Ensembl

HOGENOM

Ensembl + PhylomeDB + TreeFam + HOGENOM + …

TreeFam

TP53 gene tree(s)

PhylomeDB

Ensembl

HOGENOM

SUPERGENETREE !

Ensembl + PhylomeDB + TreeFam + HOGENOM + …

Clusters of orthologous groups

Clusters of orthologous groups

G1

Clusters of orthologous groups

G1

G2

Clusters of orthologous groups

G1

G2

…

Clusters of orthologous groups

G1

G2

…
SUPERGENETREE !

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

a b c d e

S

Species tree

 Gene tree label = species

 Multiple copies (paralogs)

 e.g. a1, a2, a3

 Gene trees may be partial +

discordant with S (e.g. G3)a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

 Our goal : find a gene tree that

displays them all

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

 Our goal : find a gene tree that

displays them all

a1 c2 e1 b1 a2 a3 d1
c1

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

 Our goal : find a gene tree that

displays them all

a1 c2 e1 b1 a2 a3 d1
c1

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

 Our goal : find a gene tree that

displays them all

a1 c2 e1 b1 a2 a3 d1
c1

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

a1

 Our goal : find a gene tree that

displays them all

a2 a3 d1
c1a1 c2 e1 b1

SuperGeneTree

 Our trees are said compatible if there is a

supertree displaying them all

 Finding a supertree (or determining incompatibility)

is an old problem

 The BUILD algorithm does that (Aho & al., 1981)

 What’s different about supergenetrees ?

SuperGeneTree

 Our trees are said compatible if there is a

supertree displaying them all

 Finding a supertree (or determining incompatibility)

is an old problem

 The BUILD algorithm does that (Aho & al., 1981)

 What’s different about supergenetrees ?

 We have the species tree

SuperGeneTree

 Often, many supergenetrees exist

 Which one is the best ?

 We explore ways to choose using information from

the species tree S

 More specifically, we explore ways to use

reconciliation with S to pick the best supergenetree

Reconciliation

a b c d

S

c2

G

Reconciliation identifies duplication, speciation and

loss events in G.

a1 b1 c1 d2

Reconciliation

a b c d

S

c2

G

Reconciliation identifies duplication, speciation and

loss events in G.

Duplication

Speciation

a1 b1 c1 d2

Reconciliation

a b c d

S

c2

G

Reconciliation identifies duplication, speciation and

loss events in G.

Apparent

Non-apparent

a1 b1 c1 d2

Reconciliation

a b c d

S

a1 b1 c1 d2 c2

G

Reconciliation identifies duplication, speciation and

loss events in G.

Losses

c

d

ab

ab

d

Reconciliation

a b c d

S

a1 b1 c1 d2 c2

G

Reconciliation identifies duplication, speciation and

loss events in G.

Possible reconciliation costs : #dups, #dups + #losses

c

d
ab

d

ab

Reconciliation

a b c d

S

a1 b1 c1 d2 c2

G

Reconciliation identifies duplication, speciation and

loss events in G.

Possible reconciliation costs : #dups, #dups + #losses

c

d
ab

d

ab

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

c1

a1 c2 e1 b1 a2 a3 d1
c1

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

c1

a1 c2 e1 b1 a2 a3 d1
c1

a1

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

c1

a1 c2 e1 b1 a2 a3 d1
c1

a1

WHICH IS BETTER ???

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

c1

a1 c2 e1 b1 a2 a3 d1
c1

a1

Count the duplications !

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 c2 e1 b1 a2 a3 d1
c1

a b c d e

S

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 c2 e1 b1 a2 a3 d1
c1

a b c d e

S

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 c2 e1 b1 a2 a3 d1
c1

a b c d e

S

a1 c2e1b1 a2 a3 d1
c1

BETTER

The plan

In this talk I…

 …come up with supertree problems

 Finding a supergenetree that minimizes duplications

 …convince you that they’re hard

 …try to do something about it

 Exact, brute-force algorithm

 A greedy heuristic

SuperGeneTree Problem 1

 Given: a set of compatible gene trees G =

{G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

SuperGeneTree Problem 1

 Given: a set of compatible gene trees G =

{G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

 NP-Complete

SuperGeneTree Problem 1

 Given: a set of compatible gene trees G =

{G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

 NP-Complete

 NP-Hard to approximate within a n1-ε factor

Independent speciation trees

G1

G2

…
No two trees share a common

gene + all trees of
orthologous groups

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

a1 c3 d3

G3

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

a1 c3 d3

G3

Independent = each gene

appears only once

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

a3 d3 c3

G4

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

a3 d3 c3

G4

Speciation trees = all

speciation (all agree with S)

SuperGeneTree Problem 2

 Given: a set of independent speciation gene trees

G = {G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

SuperGeneTree Problem 2

 Given: a set of independent speciation gene trees

G = {G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

 NP-Complete

The plan

In this talk I…

 …come up with supertree problems

 Finding a supergenetree that minimizes duplications

 …convince you that they’re hard

 …try to do something about it

 Exact, brute-force algorithm

 A greedy heuristic

What is so hard about it ?

x1 w1 a1

G1

x2 y1 c1

G3

w2 z1 b1

G2

y2 z2 d1

G4

v1 v2

v3 v4

We will find a vertex-coloring of our graph

(a partition into independent sets)

What is so hard about it ?

x1 w1 a1

G1

x2 y1 c1

G3

w2 z1 b1

G2

y2 z2 d1

G4

v1 v2

v3 v4

Gi, Gj share a gene from the same species (i.e. a label) iff vi, vj share an edge

Gi, Gj can be merged into a supertree without duplications iff vi, vj share no edge

What is so hard about it ?

x1 w1 a1

G1

x2 y1 c1

G3

w2 z1 b1

G2

y2 z2 d1

G4

v1 v2

v3 v4

Gi, Gj share a gene from the same species (i.e. a label) iff vi, vj share an edge

Gi, Gj can be merged into a supertree without duplications iff vi, vj share no edge

What is so hard about it ?

x1 w1 a1

G1

x2 y1 c1

G3

w2 z1 b1

G2

y2 z2 d1

G4

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

What is so hard about it ?

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

Makes one zero-duplication tree for each part.

G1 + G4

(0 dups)
G2 + G3

(0 dups)

What is so hard about it ?

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

Makes one zero-duplication tree for each part.

Connects these k subtrees with at most k – 1 duplications.

G1 + G4

(0 dups)
G2 + G3

(0 dups)

What is so hard about it ?

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

Makes one zero-duplication tree for each part.

Connects these k subtrees with at most k – 1 duplications.

G1 + G4

(0 dups)
G2 + G3

(0 dups)

This is a partition of the vertices of our graph into

independent sets, i.e. a vertex-coloring !

What is so hard about it ?

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

Makes one zero-duplication tree for each part.

Connects these k subtrees with at most k – 1 duplications.

G1 + G4

(0 dups)
G2 + G3

(0 dups)

This is a partition of the vertices of our graph into

independent sets, i.e. a vertex-coloring !

The plan

In this talk I…

 …come up with supertree problems

 Finding a supergenetree that minimizes duplications

 …convince you that they’re hard

 …try to do something about it

 Exact, brute-force algorithm

 A greedy heuristic

Extending the BUILD algorithm

 Given a set of trees G, the BUILD algorithm outputs,

if it exists, a supertree T displaying every tree of G

 T might be partially resolved (non-binary)

 Every binary resolution of T displays G

 BUILD can be extended to output every supertree

displaying G + every minimally resolved

(Constantinescu & Sankoff, 1995, Ng & Wormald,

1996, Semple, 2003)

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components = possible

splits at the root

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components = possible

splits at the root

a1 b1 c1

a2 c2

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components = possible

splits at the root

a1 b1 c1

a2 c2
a1 b1 c1

a2

c2

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components = possible

splits at the root

a1 b1 c1

a2 c2
a1 b1 c1

a2

c2

…

Extending the BUILD algorithm

 For every partially unresolved tree T obtained in
this fashion :

 Find a resolution that minimizes the number of
duplications (linear time, Lafond & al. 2012)

 In the worst case, there are Ω(nn/2) trees to
resolve (Jansson, Lemence, Lingas, 2012).

 Total time : Ω(n * nn/2)

 Worst case in practice : ?

Extending the BUILD algorithm

 Trying every partition of the components can take

some time.

 Instead, let’s find a way to choose a partition that

"looks good".

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will be

required.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will be

required.

Focus on the "highest" ones, i.e. those that occur

before the first speciation in S.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will be

required.

Focus on the "highest" ones, i.e. those that occur

before the first speciation in S.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will be

required.

Focus on the "highest" ones, i.e. those that occur

before the first speciation in S.

We call those duplication Pre Speciation

Duplications (PreSpecDups).

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will be

required.

Focus on the "highest" ones, i.e. those that occur

before the first speciation in S.

We call those duplication Pre Speciation

Duplications (PreSpecDups).

New subproblem : minimize only these PreSpecDups

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

b1

a1

d1

e1

c1

f1

Γ

- Make the BUILD graph and identify the

components.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

- Make the BUILD graph and identify the

components.

- Add a special edge between

components that requires a PreSpecDup

when split.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

- Make the BUILD graph and identify the

components.

- Add a special edge between

components that requires a PreSpecDup

when split.

b1

a1

d1

e1c1

e.g.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

- Make the BUILD graph and identify the

components.

- Add a special edge between

components that requires a PreSpecDup

when split.

- Find the partition that merges a

maximum of duplications.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

a1 b1 d1 f1 c1 e1

1 + 2

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

a1 b1 d1 c1 e1 f1

1

2

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

a1 b1 d1 f1 c1 e1

1 + 2

That’s a Max-Cut !!

Extending the BUILD algorithm

To minimize the number of PreSpecDups :

 Make the BUILD graph

 Add the PreSpecDup edges

 Find a Max-Cut partition of the components

 Repeat recursively on the parts

Extending the BUILD algorithm

To minimize the number of PreSpecDups :

 Make the BUILD graph

 Add the PreSpecDup edges

 Find a Max-Cut partition of the components

 Repeat recursively on the parts

That’s NP-Hard ! And we have to

repeat it recursively !!

Extending the BUILD algorithm

To minimize the number of PreSpecDups :

 Make the BUILD graph

 Add the PreSpecDup edges

 Find a Max-Cut partition of the components

 Repeat recursively on the parts

That’s NP-Hard ! And we have to

repeat it recursively !!

The result : even this problem is

hard to approximate !

Conclusion

 Fixed Parameter Tractability ?

 Criteria other than duplications ?

 e.g. gene losses

 What to do if the input gene trees are incompatible

?

Aïda Ouangraoua Nadia El-Mabrouk

Acknowledgements

The 14th RECOMB-CG

October 2016 in MONTRÉAL ☺
Probably from Monday 10 to Wednesday 12

