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The plan

In this talk we...

...reconcile gene trees with species trees, but:
there are many gene trees, and

Duplications/losses can affect several genes.
...detect whole genome duplications.

...try to simulate genome evolution with segmental
events.



Reconciliation
N

Reconciliation identifies duplication, speciation and
loss events in a gene tree G.

G S
a C ds b, A B C
Gene tree Species tree

Notation tip: gene name = lowercase species
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Reconciliation
N

Reconciliation identifies duplication, speciation and
loss events in a gene tree G.

G S

How do we find
there?

a; io] < az b, A 8 S

Gene tree Species tree
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LCA Mapping

How do we find
there?
LCA Mapping!

a; io] < az b, A 8 S

Gene tree Species tree



LCA Mapping

Map each ancestral gene to the species that is the lowest
common ancestor (LCA) of the descending mapped species.

G S

a, ¢ a, b, A

B C

Gene tree Species tree



LCA Mapping

Map each ancestral gene to the species that is the lowest
common ancestor (LCA) of the descending mapped species.
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LCA Mapping

Map each ancestral gene to the species that is the lowest
common ancestor (LCA) of the descending mapped species.

lca(A, B, C)
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LCA Mapping

Map each ancestral gene to the species that is the lowest
common ancestor (LCA) of the descending mapped species.

1 Rule: a node of G must be a Dup if it maps to the same species as a child.




LCA Mapping

Map each ancestral gene to the species that is the lowest
common ancestor (LCA) of the descending mapped species.
1 Rule: a node of G must be a Dup if it maps to the same species as a child.

71 Each copy should be present in each species — otherwise, losses.




LCA Mapping

Now let’s have more than one gene tree.

E
a; < dz b, a b, b, A B C
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Now let’s have more than one gene tree.
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LCA Mapping

Now let’s have more than one gene tree.

Maybe these duplications are the same! (e.g. a block duplication of a segment)

If so, this Dup must have occurred in the E species.
=> We must remap the D duplication.

1 DUP, 5 LOSSES (before, we had 2 DUPS, 3 LOSSES)



Reconciling with segmental Dups
N

0 If we know the mapping, computing the number of
segmental Dups is easy.

11 Losses are also easy to compute.

11 Challenge: find the best mapping.
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—

1 Question: given a fixed mapping, how do we
minimize the number of segmental Dups?
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Reconciling with segmental Dups
—

1 Question: given a fixed mapping, how do we
minimize the number of segmental Dups?

Any two Dups unrelated by ancestry + mapped to the
same species could potentially be « the same »

# segmental Dups in f = height of f forest

S




Reconciling with segmental Dups

1 Given: a set of gene trees G = {G,, ... G, } and a
species tree S

0 Find: a mapping of the nodes of G that minimizes:
the sum of Dup heights.

the sum of Dup heights + the number of losses.

G, G, S



Reconciling with segmental Dups

1 Given: a set of gene trees G = {G,, ... G, } and a
species tree S

0 Find: a mapping of the nodes of G that minimizes:
the sum of Dup heights.
O * (sum of Dup heights) + A * (number of losses)

G, G, S



Reconciling with segmental Dups
—

1 A node mapped above its LCA mapping must be a
Dup.

-1 Preserve time-consistency in mapping.

a, b, ¢
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Reconciling with segmental Dups

A node mapped above its LCA mapping must be a
Dup.

Preserve time-consistency in mapping.

Remapping a node can create a chain of Dups
above it.

a, b, ¢



Some people worked on this
=

11 Episode Clustering

Minimize # of species that underwent Dup, given that remapping
a node cannot force remapping its parent.

Can be solved exactly in poly-time.

[Cotton & Page, Biocomputing 2002], [Burleigh & al., RECOMB
2008]

71 Minimize Dup heights, under the same constraints.
Heuristics [Guigd & al., Mol Phylo Evol 1996]

Exact [Bansal & Eulenstein, Bioinformatics 2008], [Luo & al., TCBB
2011]

Other type of contraints [Paszek & Gorecki, TCBB 2017]

-1 Our contributions: gef rid of constraints + incorportate losses.



The case of A= 06
S

71 A>6 => losses are worse than Dups.
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The case of A= 06

7 A2 6 => losses are worse than Dups.

1 Remapping an ancestral node to a higher species
will always create additional losses.

1 Remapping saves at most one Dup, but creates at
least one loss => not really worth it.



The case of A= 06

Theorem: when A > §, the usual LCA mapping yields

an optimal reconciliation. It is also the unique

optimal reconciliation if A > 4.




The case of A=0

When A = 0, we only care about the sum of Dup
heights.

Complexity was left opened by Paszek & Gorecki.

Theorem: Finding an optimal reconciliation with

segmental Dups when A = O is NP-hard.



The case of A=0

When A = 0, we only care about the sum of Dup
heights.

Complexity was left opened by Paszek & Gorecki.

Theorem: Finding an optimal reconciliation with

segmental Dups when A = O is NP-hard.
Reduction from Vertex Cover

/-page proof, see paper
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The case of A=0

Theorem: finding an optimal reconciliation with

segmental Dups when A = O is NP-hard, even if
only one gene tree is given in the input.



The case of A=0

Theorem: finding an optimal reconciliation with
segmental Dups when A = O is NP-hard, even if
only one gene tree is given in the input.

Reduction from reconciliation with many gene trees: just
join all the gene trees under many speciations.

S’ T




An FPT algorithm for A< 6

1
2 An O( (6/A)¢* 1 n ) time algorithm.

d is the sum of Dup heights in an optimal solution

e.g. when 6 = 3, A = 2, we get a O(1.59% ! n)
algorithm.



An FPT algorithm for A< 6

7 When we remap a Dup node up by k species, we
create at least k new losses.
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create at least k new losses.

/\-»




An FPT algorithm for A< 6

1 When we remap a Dup node up by k species, we
create at least k new losses.




An FPT algorithm for A< 6

When we remap a Dup node up by k species, we
create at least k new losses.

If we remap a Dup node up by more than §/A
species, we save 1 Dup but create > §/A losses.




An FPT algorithm for A< 6

When we remap a Dup node up by k species, we
create at least k new losses.

If we remap a Dup node up by more than §/A
species, we save 1 Dup but create > §/A losses.
Cost changes by > -6 + A * (§/A) = O.

Not worth it.
b




An FPT algorithm for A< 6

Branching algorithm:
Take a Dup node x mapped to species s under the LCA
mapping.

Branch into the 6 /A possible ways of remapping x to
an ancestor s’ of s.

Each time we branch, Dup heights increase by 1.

Must also remap other nodes who « want » to remap to s’.



An FPT algorithm for A< 8

Branching algorithm:

Take a Dup node x mapped to species s under the LCA
mapping.
Branch into the 6 /A possible ways of remapping x to
an ancestor s’ of s.

Each time we branch, Dup heights increase by 1.

Must also remap other nodes who « want » to remap to s’.

Search tree of degree 8 /A and height at most d.
O( (6/N)¢* 1 n) complexity



Experiments

We implemented the FPT algorithm.

We applied it on 2 datasets:

Yeast species from [Butler & al., Nature, 2009]
16 species, 2379 gene trees

Eukaryotes from [Guigo & al., Mol Phylo Evo, 1996]

16 species, 53 gene trees


https://github.com/manuellafond/Multrec

Experiments

0 In the 2379 yeast trees, we infer a segmental Dup
with 216 genes (6 = 3, A = 2).

Located here
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Experiments

In the 2379 yeast trees, we infer a segmental Dup
with 216 genes (6 = 3, A = 2).

Located here
Coincides with WGD
found using synteny in
[Kellis, Birren & Lander,
Nature, 2004]

Nodes 7,6,13,2 had seg-
mental Dup with 190, 157,
148 and 136 genes.
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Experiments

In the 53 Eukaryote gene trees.
ExactMGD [Bansal & Eulenstein, Bioinf, 2008] finds a
solution with 5 segmental Dups
Does not allow speciations to become duplications.
We find a solution with 4 segmental Dups
By setting & > 61, A =1

All segmental Dups found in [Guigo & al., 1996] are
confirmed, EXCEPT ONE.



Experiments
—

71 In the 53 Eukaryote gene trees.

In our solutions, no Dup maps
here
(Tetrapoda)
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Conclusion

Open problems
Complexity when &/A is a constant?

Approximation algorithms?

Modeling segmental losses.

Incorporate lateral transfer.

More practical application (e.g. detect WGD in
plants)






Reconciliation
N

Reconciliation identifies duplication, speciation and
loss events in a gene tree G.
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Duplication
Speciation
a, b, c; d, c, a b c d

Gene tree Species tree



Reconciliation
N

Reconciliation identifies duplication, speciation and
loss events in a gene tree G.

Apparent

Non-agparent

Gene tree Species tree



Reconciliation
N

Reconciliation identifies duplication, speciation and
loss events in a gene tree G.

Losses

Gene tree Species tree



Reconciliation
—

Reconciliation identifies duplication, speciation and
loss events in a gene tree G.

Possible reconciliation costs : #dups, #dups + #Hlosses
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TP53 gene tree(s)
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TP53 gene tree(s)

Ensembl

Phylome

TP73

TP73
TP73
" TP73
TP73

Fa

Ensembl + PhylomeDB + TreeFam + HOGENOM + ...

SUPERGENETREE !

Lodidy

reeFam

B 253, Fruit fly
m B> TPS3, Zebrafich
e | 24 1PS3, Human

. TRPE3, House mouse
_C: .TPGB, Norway rat
e W 1Ps3, chicken

B 1P73, Zebrafish
_C: N 1773, Chicken
e mms, Human

B 1rP73, House mouse
_: .1?73, Norway rat
— ,TP53, Zebrafish

P P53, Norway rat
_C: P 1A, Norway rat
- . TRPS3, House mouse

e m‘rpss, Human

HOGENOM pEat

uuuuuuuuuuuuuuuuuu

82




Clusters of orthologous groups




Clusters of orthologous groups
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Clusters of orthologous groups
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The Supergenetree problem
-

Multiple gene trees Species tree

G2
\ a b C d e
gy O3 € 0 Gene tree label = species
0 Multiple copies (paralogs)
C;3

O e.g. a;, d, d

\ 0 Gene trees may be partial +
b, e a o discordant with S (e.g. G;)
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Multiple gene trees 0 Our goal : find a gene tree that

displays them all

G]/X
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The Supergenetree problem

Multiple gene trees

0 Our goal : find a gene tree that
displays them all



SuperGenelree

Our trees are said compatible if there is a
supertree displaying them all

Finding a supertree (or determining incompatibility)
is an old problem

The BUILD algorithm does that (Aho & al., 1981)

What'’s different about supergenetrees ¢



SuperGeneTlree

Our trees are said compatible if there is a
supertree displaying them all

Finding a supertree (or determining incompatibility)
is an old problem

The BUILD algorithm does that (Aho & al., 1981)
What'’s different about supergenetrees ¢

We have the species tree



SuperGenelree
=

1 Often, many supergenetrees exist
1 Which one is the best ¢

1 We explore ways to choose using information from
the species tree S

1 More specifically, we explore ways to use
reconciliation with S to pick the best supergenetree



Reconciliation
o

Reconciliation identifies duplication, speciation and
loss events in G.
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Reconciliation identifies duplication, speciation and
loss events in G.
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Duplication
Speciation
a, b, c d, c, a b c d
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Reconciliation identifies duplication, speciation and
loss events in G.
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Reconciliation
N

Reconciliation identifies duplication, speciation and
loss events in G.

Losses



Reconciliation
—

Reconciliation identifies duplication, speciation and
loss events in G.

a, b, c; d, c, a b c

Possible reconciliation costs : #dups, #dups + #Hlosses



Reconciliation
N

Reconciliation identifies duplication, speciation and
loss events in G.

a b C d

Possible reconciliation costs : #dups, #dups + #losses
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The Supergenetree problem
-

G, \
\ a, b, e, a, a3 ¢ ¢, d



The Supergenetree problem
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The Supergenetree problem
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The Supergenetree problem
N

a, b, o3 d, a; ¢ ¢, d,



The Supergenetree problem
N
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The Supergenetree problem
-

A A
a, ¢, e by, a, a3 ¢ d
a b C d e

a, b, o3 d, a; ¢ ¢, d,



The plan
N

In this talk I...

7 ...come up with supertree problems

o Finding a supergenetree that minimizes duplications

O ...convince you that they’re hard

O ...try to do something about it
O Exact, brute-force algorithm

O A greedy heuristic



SuperGeneTree Problem 1

1 Given: a set of compatible gene trees
{G,, ..., G} and a species tree S
o Find: a SuperGeneTree G* that

displays every tree of G
minimizes #dups(G*, S)
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SuperGeneTree Problem 1

Given: a set of compatible gene trees
{G,, ..., G} and a species tree S

Find: a SuperGeneTree G* that

displays every tree of G
minimizes #dups(G*, S)

NP-Complete

NP-Hard to approximate within a n'-¢ factor



Independent speciation trees

T
A

No two trees share a common
gene + all trees of
orthologous groups




Independent speciation trees
—
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Independent speciation trees
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Independent speciation trees
—

Independent = each gene
appears only once




Independent speciation trees
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Independent speciation trees

1
%A
a, b, <
S
GQ/\
a, ) d,
a b C d

Speciation trees = all
speciation (all agree with S)




SuperGeneTree Problem 2
=

1 Given: a set of independent speciation gene trees
G={G,, ..., G} and a species tree S

o Find: a SuperGeneTree G* that

displays every tree of G
minimizes #dups(G*, S)



SuperGeneTree Problem 2
=

1 Given: a set of independent speciation gene trees
G={G,, ..., G} and a species tree S

o Find: a SuperGeneTree G* that

displays every tree of G
minimizes #dups(G*, S)

1 NP-Complete



The plan
N

In this talk I...

O ...come up with supertree problems

O Finding a supergenetree that minimizes duplications

7 ...convince you that they’re hard

O ...try to do something about it
O Exact, brute-force algorithm
O A greedy heuristic



What i

s so hard about it ¢
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We will find a vertex-coloring of our graph

(a partition into independent sets)




What is so hard about it ¢
-

A
N AN
X Wi a, W2 o & b,
N

N AN
X2 Y “ Y2 22 d,
23:;, G, share a gene from the same species (i.e. a label) iff v, v, share an edge

G,, G, can be merged into a supertree without duplications iff v, v. share no edge



What is so hard about it ¢

G, G,
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G,, G, share a gene from the same species (i.e. a label) iff v, v, share an edge
&

G,, G, can be merged into a supertree without duplications iff v, v. share no edge
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What is so hard about it ¢

G, + G,
V3
This is a partition of the vertices of our graph into
independent sets, i.e. a vertex-coloring !
A best solution partitions the trees into kGets of trees that all share no “label™ >

Makes one zero-duplication tree for each part.
Connects these k subtrees with at most k — 1 duplications.



The plan
N

In this talk I...

O ...come up with supertree problems

O Finding a supergenetree that minimizes duplications

O ...convince you that they’re hard

1 ...try to do something about it
o1 Exact, brute-force algorithm
o1 A greedy heuristic



Extending the BUILD algorithm
—

1 Given a set of trees G, the BUILD algorithm outputs,
if it exists, a supertree T displaying every tree of G
T might be partially resolved (non-binary)
Every binary resolution of T displays G

-1 BUILD can be extended to output every supertree
displaying G + every minimally resolved
(Constantinescu & Sankoff, 1995, Ng & Wormald,
1996, Semple, 2003)



Extending the BUILD algorithm
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BUILD graph
vertices = genes
edges = genes together in some triplet

G
2 a, C,y
a, b, %)
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\ Partition of connected components = possible
splits at the root
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BUILD graph
vertices = genes
G, edges = genes together in some triplet
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G,
\ Partition of connected components = possible
splits at the root
d; b, C2
G




Extending the BUILD algorithm
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BUILD graph
vertices = gene
G, edges = genes togetheri
d b, ¢

\ Partition of connected components = possible
splits at the root




Extending the BUILD algorithm
—

BUILD graph
vertices = genes

G, edges = genes together in some triplet

da b, ¢

>

\ Partition of connected components = possible

splits at the root

d, b, )

G,




Extending the BUILD algorithm

For every partially unresolved tree T obtained in
this fashion :

Find a resolution that minimizes the number of
duplications (linear time, Lafond & al. 201 2)

In the worst case, there are Q(n"2) trees to
resolve (Jansson, Lemence, Lingas, 2012).

Total time : Q(n * n"?)

Worst case In practice : ?



Extending the BUILD algorithm
—

o Trying every partition of the components can take
some time.

7 Instead, let’s find a way to choose a partition that
"looks good".



A greedy approach

S
AN
a; d; ¢

AN

d, b, e
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We already know that some duplications will be
required.
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We already know that some duplications will be
required.

Focus on the "highest” ones, i.e. those that occur
before the first speciation in S.
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m AN AN, AN,

a, d; ¢, d; b; e

We already know that some duplications will be
required.

Focus on the "highest" ones, i.e. those that occur
before the first speciation in S.

We call those duplication Pre Speciation
Duplications (PreSpecDups).



A greedy approach

m AN AN, AN,

a, d; ¢, d; b; e

We already know that some duplications will be
required.

Focus on the "highest” ones, i.e. those that occur
before the first speciation in S.

We call those duplication Pre Speciation
Duplications (PreSpecDups).

New subproblem : minimize only these PreSpecDups




A greedy approach

SR R, R R

d, b; &
- Make the BUILD graph and identify the
I— components.
i) f,
-
1 c,



A greedy approach

m AN AN, AN,

a, d; ¢, d; b; e

- Make the BUILD graph and identify the
components.

- Add a special edge between

components that requires a PreSpecDup
when split.

©
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m AN AN, AN,

a, d; ¢, d; b; e

- Make the BUILD graph and identify the
components.

- Add a special edge between

components that requires a PreSpecDup
when split.

©

e.g.




A greedy approach

m AN AN, AN,

a, d; ¢, d; b; e

- Make the BUILD graph and identify the
components.

- Add a special edge between

components that requires a PreSpecDup
when split.

©

- Find the partition that merges a
maximum of duplications.
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A greedy approach

That’s a Max-Cut !




Extending the BUILD algorithm

To minimize the number of PreSpecDups :
Make the BUILD graph
Add the PreSpecDup edges
Find a Max-Cut partition of the components

Repeat recursively on the parts
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To minimize the number of PreSpecDups :

1 Make the BUILD graph

1 Add the PreSpecDup edges

- Find a Max-Cut partition of the components

-1 Repeat recursiv‘e}s@\’rhe parts

That’s NP-Hard ! And we have to
repeat it recursively !




Extending the BUILD algorithm
—

To minimize the number of PreSpecDups :

1 Make the BUILD graph

1 Add the PreSpecDup edges

- Find a Max-Cut partition of the components

-1 Repeat recursiv‘e}sn\’rhe parts

That’s NP-Hard ! And we have to
repeat it recursively !

The result : even this problem is

hard to approximate !




Conclusion

Fixed Parameter Tractability ¢

Criteria other than duplications ¢

e.g. gene losses

What to do if the input gene trees are incompatible
2
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