
Manuel Lafond

The tandem duplication
distance is NP-hard

Manuel Lafond, Binhai Zhu, Peng Zou



Manuel Lafond

Tandem duplication (TD)

String operation that copies a substring and 
pastes it right after.

𝐴𝑋𝐵 → 𝐴𝑋𝑋𝐵

𝑋 could be any substring

e.g.     abcbcabc → abcbcacbcabc

Tandem duplications
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Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to 
transform 𝑆 into 𝑇

Tandem duplication distance
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Tandem duplication distance

abc
abcabc
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abcabbcabcabc

𝑑 𝑆, 𝑇 = 3
(I think)

Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to 
transform 𝑆 into 𝑇
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Extensively studied in bioinformatics

Most common dup mechanism [Szostak 1980]

Occurs in cancer [Oesper & al. 2010]

Gene clusters evolve by TD [Gascuel & al. 2003]

Some history
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TD language of a string 𝑆

𝑡𝑑 𝑆 = strings that can be generated from 𝑆 by TDs

Introduced in for copying systems
[Andrzej & Rozenberg, DAM 1984]

If 𝑆 is in binary, then 𝑡𝑑(𝑆) is regular

Otherwise, 𝑡𝑑 𝑆 is not regular

Some history
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TD language of a string 𝑆

𝑡𝑑 𝑆 = strings that can be generated from 𝑆 by TDs

Introduced in for copying systems
[Andrzej & Rozenberg, DAM 1984]

If 𝑆 is in binary, then 𝑡𝑑(𝑆) is regular

Otherwise, 𝑡𝑑 𝑆 is not regular

Rediscovered in 2004

[Leupold, Mitrana & Sempere, DAM, 2004]

Other formal language questions studied

Some history
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In [Leupold & al. 2004]

Open problem: given 𝑆, 𝑇, decide if 𝑇 is in 𝑡𝑑(𝑆).

• Easy for binary alphabets, otherwise unknown

Open problem: complexity of computing 𝑑(𝑆, 𝑇)

• Unknown even on binary alphabet

Some history
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In [Leupold & al. 2004]

Open problem: given 𝑆, 𝑇, decide if 𝑇 is in 𝑡𝑑(𝑆).

• Easy for binary alphabets, otherwise unknown

Open problem: complexity of computing 𝑑(𝑆, 𝑇)

• Unknown even on binary alphabet

In [Alon & al., IEEE ToIT, 2017]

Max value of 𝑑(𝑆, 𝑇) in terms of |𝑇| (if well-defined)

If 𝑆 is binary and square-free, then 𝑑 𝑆, 𝑇 ∊ Ѳ(|𝑇|)

Also ask about the complexity of 𝑑(𝑆, 𝑇)

Some history
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Computing 𝑑(𝑆, 𝑇) is NP-hard.

Even if S is exemplar: has no duplicate character.

Solves the 15 years-old open problem of Leupold & 
al.

Reduction from new NP-hard problem

Cost-Effective Subgraph (bonus W[1]-hardness 
result)

FPT result: if 𝑆 is exemplar, 𝑑(𝑆, 𝑇) can be found in time 

2𝑂(𝑘2)𝑝𝑜𝑙𝑦 𝑛

Our contributions
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Reduction from Cost-effective subgraph 
problem

NP hardness
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Let 𝐺 be a graph and let 𝑐 ∊ ℕ.

For 𝑋 ⊆ 𝑉(𝐺), let 𝐸 𝑋 = {𝑢𝑣 ∊ 𝐸 𝐺 : 𝑢, 𝑣 ∊ 𝑋}

𝑐𝑜𝑠𝑡 𝑋 = 𝑐(|𝐸 𝐺 | − 𝐸 𝑋 | + 𝑋 |𝐸(𝑋)|

Cost effective subgraph

𝑐 𝑚 −
𝑘

2
+ 𝑘

𝑘

2

𝑘-clique
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Let 𝐺 be a graph and let 𝑐 ∊ ℕ.

For 𝑋 ⊆ 𝑉(𝐺), let 𝐸 𝑋 = {𝑢𝑣 ∊ 𝐸 𝐺 : 𝑢, 𝑣 ∊ 𝑋}

𝑐𝑜𝑠𝑡 𝑋 = 𝑐(|𝐸 𝐺 | − 𝐸 𝑋 | + 𝑋 |𝐸(𝑋)|

We pay 𝑐 for each edge not in 𝑋, and |𝑋| for each 
edge inside 𝑋.

Generalization: each edge in 𝑋 costs 𝑓( 𝑋 ).

Cost effective subgraph
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Let 𝐺 be a graph and let 𝑐 ∊ ℕ.

For 𝑋 ⊆ 𝑉(𝐺), let 𝐸 𝑋 = {𝑢𝑣 ∊ 𝐸 𝐺 : 𝑢, 𝑣 ∊ 𝑋}

𝑐𝑜𝑠𝑡 𝑋 = 𝑐(|𝐸 𝐺 | − 𝐸 𝑋 | + 𝑋 |𝐸(𝑋)|

We pay 𝑐 for each edge not in 𝑋, and |𝑋| for each 
edge inside 𝑋.

Generalization: each edge in 𝑋 costs 𝑓( 𝑋 ).

Want to contain many edges, but diminishing 
returns on size of 𝑋.

Cost effective subgraph
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Given: graph 𝐺, cost 𝑐, integer 𝑘

Q: is there 𝑋 ⊆ 𝑉(𝐺) such that 𝑐𝑜𝑠𝑡(𝑋) ≤ 𝑘?

Cost effective subgraph
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Reduction from CLIQUE.

Take CLIQUE instance (𝐺, 𝑘).

Put 𝑐 = 3𝑘/2

Graph 𝐺 has a clique of size 𝑘 if and only if 𝐺 has 

𝑋 ⊆ 𝑉(𝐺) of cost 𝑐𝑚 – 𝑘/2 𝑘
2

Cost effective subgraph is NP-hard

𝑐 𝑚 −
𝑘

2
+ 𝑘

𝑘

2
= 𝑐𝑚 – 𝑘/2

𝑘

2

𝑘-clique

(⇒)

(⇐) Calculate stuff, show that only a 𝑘-clique can

achieve this cost (not even a (𝑘 + 1)-clique.
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Reduction from CLIQUE.

Take CLIQUE instance (𝐺, 𝑘).

Put 𝑐 = 3𝑘/2

Graph 𝐺 has a clique of size 𝑘 if and only if 𝐺 has 

𝑋 ⊆ 𝑉(𝐺) of cost 𝑐𝑚 – 𝑘/2 𝑘
2

Cost-effective subgraph is W[1]-hard with 
respect to parameter 𝑐.

Unknown: hardness w.r.t. 𝑐𝑜𝑠𝑡(𝑋).

Cost effective subgraph is NP-hard
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Back to our main problem
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The reverse of a TD is a contraction

𝐴𝑋𝑋𝐵 → 𝐴𝑋𝐵

Observation

𝑑(𝑆, 𝑇) ≤ 𝑘 iff 𝑇 can be transformed into 𝑆 using 
𝑘 contractions

Contractions

abcabbcabcabc
abcabcabc
abcabc
abc
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Given a Cost-effective Subgraph instance (𝐺, 𝑐)

Design strings 𝑆 and 𝑇 so that
𝑇 = 𝑆∗𝐸1𝐸2 … 𝐸𝑝

where:

▪ 𝑆∗is generated from 𝑆

▪ Each 𝐸𝑖 is a gadget substring for edge 𝑒𝑖 of 𝐺

▪ to go from 𝑇 to 𝑆, we must:

1) contract 𝑆∗ to some intermediate 𝑆′

2) use 𝑆′ to contract all the 𝐸𝑖's

3) contract 𝑆′ into 𝑆

Idea of the reduction
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𝑆∗𝐸1𝐸2𝐸3𝐸4

𝑆′𝐸1𝐸2𝐸3𝐸4

𝑆′𝐸2𝐸3𝐸4

𝑆′𝐸3𝐸4

𝑆′𝐸4

𝑆′
𝑆

Form of solutions

𝑇 =
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𝑆∗𝐸1𝐸2𝐸3

Idea of the reduction

𝑇 =

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3
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𝑆∗𝐸1𝐸2𝐸3

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀
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𝑆∗𝐸1𝐸2𝐸3

𝑆′𝐸1𝐸2𝐸3

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀
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𝑆∗𝐸1𝐸2𝐸3

𝑺′𝑬𝟏𝐸2𝐸3

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

Both endpoints of 𝐸1 are chosen => 
𝑆′ can gobble up 𝐸1 in |𝑋| − 2

contractions.
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𝑆∗𝐸1𝐸2𝐸3

𝑆′𝐸1𝐸2𝐸3

𝑺′𝑬𝟐𝐸3

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

Both endpoints of 𝐸2 are chosen => 
𝑆′ can gobble up 𝐸2 in |𝑋| − 2

contractions.
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𝑆∗𝐸1𝐸2𝐸3

𝑆′𝐸1𝐸2𝐸3

𝑆′𝐸2𝐸3

𝑺′𝑬𝟑

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

An endpoint of 𝐸3 is NOT chosen => 
𝑆′ CANNOT gobble up 𝐸3.  Must use 

mystery 𝑀 using 𝒄 contractions.
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𝑆∗𝐸1𝐸2𝐸3

𝑆′𝐸1𝐸2𝐸3

𝑆′𝐸2𝐸3

𝑆′𝐸3

𝑆′

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

Summary: choose intermediate 
𝑆′ so that corresponding 𝑋 is such 
that:
- 𝐸𝑖's contained in 𝑋 cost |𝑋| − 2
- 𝐸𝑖's not contained in 𝑋 cost 𝑐

Same as in cost-effective problem.

Reduction is technical to ensure 
that all solutions have this form.
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Theorem

If 𝑆 is exemplar (each character occurs once),
then 𝑑(𝑆, 𝑇) can be computed in time 

2𝑂(𝑘2) + 𝑝𝑜𝑙𝑦 𝑛 .

FPT result
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Idea

Breakpoint in 𝑆 = consecutive characters 𝑥𝑦 in 𝑆
such that in 𝑇, either :

• some 𝑥 is not followed by 𝑦; or 

• some 𝑦 is not preceded by 𝑥.

FPT Result

S = abcdefghi
T = abcdecdefghi
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such that in 𝑇, either :
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Idea

Breakpoint in 𝑆 = consecutive characters 𝑥𝑦 in 𝑆
such that in 𝑇, either :

• some 𝑥 is not followed by 𝑦; or 

• some 𝑦 is not preceded by 𝑥.

A TD creates at most two breakpoints

• If 𝑑(𝑆, 𝑇) ≤ 𝑘, then 𝑆 has at most 2𝑘 breakpoints.

FPT Result

S = ab|cde|fghi
T = abcdecdefghi
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Lemma

Let 𝑋1, … , 𝑋𝑙 be the maximal substrings of 𝑆
that have no breakpoint. Obtain 𝑆′ and 𝑇′ by 
replacing every occurrence of 𝑋1, … , 𝑋𝑙 by a 
single, distinct character in 𝑆 and 𝑇.

Then 𝑑 𝑆, 𝑇 = 𝑑 𝑆′, 𝑇′ .

S = ab|cde|fghi
T = abcdecdefghi

S' = X1X2X3

T' = X1X2X2X3
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At most 2𝑘 breakpoints 

 𝑆′ has at most 2𝑘 + 1 characters

 𝑇′ has length at most (2k + 1)2𝑘

 Branching over every sequence of 𝑘 TDs 

explores 𝑂 (𝑘2𝑘)2𝑘 possibilities, hence the 

2𝑂(𝑘2)𝑝𝑜𝑙𝑦 𝑛 complexity.
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Computing the TD distance is NP-hard

Potentially useful Cost-effective subgraph 
problem

When having to balance a number of chosen
elements vs diminishing returns on size

FPT result on exemplar substrings

Breakpoint lemma might hold for other types of
edit operations, e.g. deletions, transpositions, ...

Summary
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Complexity of deciding whether 𝑆 can 
generate 𝑇.

Open even for ternary alphabets.

Complexity of 𝑑(𝑆, 𝑇) on fixed size alphabets.

Probably NP-hard for ternary, no idea for binary.

FPT if 𝑆 is not exemplar?

Complexity if length of a dup is bounded by a 
constant 𝑐?  Is 𝑡𝑑(𝑆) context-free in this 
setting?

Open problems


