
Manuel Lafond

The tandem duplication
distance is NP-hard

Manuel Lafond, Binhai Zhu, Peng Zou

Manuel Lafond

Tandem duplication (TD)

String operation that copies a substring and
pastes it right after.

𝐴𝑋𝐵 → 𝐴𝑋𝑋𝐵

𝑋 could be any substring

e.g. abcbcabc → abcbcacbcabc

Tandem duplications

Manuel Lafond

Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to
transform 𝑆 into 𝑇

Tandem duplication distance

Manuel Lafond

Tandem duplication distance

abc

abcabbcabcabc

Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to
transform 𝑆 into 𝑇

Manuel Lafond

Tandem duplication distance

abc
abcabc

abcabbcabcabc

Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to
transform 𝑆 into 𝑇

Manuel Lafond

Tandem duplication distance

abc
abcabc

abcabbcabcabc

Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to
transform 𝑆 into 𝑇

Manuel Lafond

Tandem duplication distance

abc
abcabc
abcabcabc
abcabbcabcabc

Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to
transform 𝑆 into 𝑇

Manuel Lafond

Tandem duplication distance

abc
abcabc
abcabcabc
abcabbcabcabc

Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to
transform 𝑆 into 𝑇

Manuel Lafond

Tandem duplication distance

abc
abcabc
abcabcabc
abcabbcabcabc

Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to
transform 𝑆 into 𝑇

Manuel Lafond

Tandem duplication distance

abc
abcabc
abcabcabc
abcabbcabcabc

𝑑 𝑆, 𝑇 = 3
(I think)

Tandem duplication distance
𝑑 𝑆, 𝑇 = minimum number of TDs required to
transform 𝑆 into 𝑇

Manuel Lafond

Extensively studied in bioinformatics

Most common dup mechanism [Szostak 1980]

Occurs in cancer [Oesper & al. 2010]

Gene clusters evolve by TD [Gascuel & al. 2003]

Some history

Manuel Lafond

TD language of a string 𝑆

𝑡𝑑 𝑆 = strings that can be generated from 𝑆 by TDs

Introduced in for copying systems
[Andrzej & Rozenberg, DAM 1984]

If 𝑆 is in binary, then 𝑡𝑑(𝑆) is regular

Otherwise, 𝑡𝑑 𝑆 is not regular

Some history

Manuel Lafond

TD language of a string 𝑆

𝑡𝑑 𝑆 = strings that can be generated from 𝑆 by TDs

Introduced in for copying systems
[Andrzej & Rozenberg, DAM 1984]

If 𝑆 is in binary, then 𝑡𝑑(𝑆) is regular

Otherwise, 𝑡𝑑 𝑆 is not regular

Rediscovered in 2004

[Leupold, Mitrana & Sempere, DAM, 2004]

Other formal language questions studied

Some history

Manuel Lafond

In [Leupold & al. 2004]

Open problem: given 𝑆, 𝑇, decide if 𝑇 is in 𝑡𝑑(𝑆).

• Easy for binary alphabets, otherwise unknown

Open problem: complexity of computing 𝑑(𝑆, 𝑇)

• Unknown even on binary alphabet

Some history

Manuel Lafond

In [Leupold & al. 2004]

Open problem: given 𝑆, 𝑇, decide if 𝑇 is in 𝑡𝑑(𝑆).

• Easy for binary alphabets, otherwise unknown

Open problem: complexity of computing 𝑑(𝑆, 𝑇)

• Unknown even on binary alphabet

In [Alon & al., IEEE ToIT, 2017]

Max value of 𝑑(𝑆, 𝑇) in terms of |𝑇| (if well-defined)

If 𝑆 is binary and square-free, then 𝑑 𝑆, 𝑇 ∊ Ѳ(|𝑇|)

Also ask about the complexity of 𝑑(𝑆, 𝑇)

Some history

Manuel Lafond

Computing 𝑑(𝑆, 𝑇) is NP-hard.

Even if S is exemplar: has no duplicate character.

Solves the 15 years-old open problem of Leupold &
al.

Reduction from new NP-hard problem

Cost-Effective Subgraph (bonus W[1]-hardness
result)

FPT result: if 𝑆 is exemplar, 𝑑(𝑆, 𝑇) can be found in time

2𝑂(𝑘2)𝑝𝑜𝑙𝑦 𝑛

Our contributions

Manuel Lafond

Reduction from Cost-effective subgraph
problem

NP hardness

Manuel Lafond

Let 𝐺 be a graph and let 𝑐 ∊ ℕ.

For 𝑋 ⊆ 𝑉(𝐺), let 𝐸 𝑋 = {𝑢𝑣 ∊ 𝐸 𝐺 : 𝑢, 𝑣 ∊ 𝑋}

𝑐𝑜𝑠𝑡 𝑋 = 𝑐(|𝐸 𝐺 | − 𝐸 𝑋 | + 𝑋 |𝐸(𝑋)|

Cost effective subgraph

𝑐 𝑚 −
𝑘

2
+ 𝑘

𝑘

2

𝑘-clique

Manuel Lafond

Let 𝐺 be a graph and let 𝑐 ∊ ℕ.

For 𝑋 ⊆ 𝑉(𝐺), let 𝐸 𝑋 = {𝑢𝑣 ∊ 𝐸 𝐺 : 𝑢, 𝑣 ∊ 𝑋}

𝑐𝑜𝑠𝑡 𝑋 = 𝑐(|𝐸 𝐺 | − 𝐸 𝑋 | + 𝑋 |𝐸(𝑋)|

We pay 𝑐 for each edge not in 𝑋, and |𝑋| for each
edge inside 𝑋.

Generalization: each edge in 𝑋 costs 𝑓(𝑋).

Cost effective subgraph

𝑐 𝑚 −
𝑘

2
+ 𝑘

𝑘

2

𝑘-clique

Manuel Lafond

Let 𝐺 be a graph and let 𝑐 ∊ ℕ.

For 𝑋 ⊆ 𝑉(𝐺), let 𝐸 𝑋 = {𝑢𝑣 ∊ 𝐸 𝐺 : 𝑢, 𝑣 ∊ 𝑋}

𝑐𝑜𝑠𝑡 𝑋 = 𝑐(|𝐸 𝐺 | − 𝐸 𝑋 | + 𝑋 |𝐸(𝑋)|

We pay 𝑐 for each edge not in 𝑋, and |𝑋| for each
edge inside 𝑋.

Generalization: each edge in 𝑋 costs 𝑓(𝑋).

Want to contain many edges, but diminishing
returns on size of 𝑋.

Cost effective subgraph

Manuel Lafond

Given: graph 𝐺, cost 𝑐, integer 𝑘

Q: is there 𝑋 ⊆ 𝑉(𝐺) such that 𝑐𝑜𝑠𝑡(𝑋) ≤ 𝑘?

Cost effective subgraph

Manuel Lafond

Reduction from CLIQUE.

Take CLIQUE instance (𝐺, 𝑘).

Put 𝑐 = 3𝑘/2

Graph 𝐺 has a clique of size 𝑘 if and only if 𝐺 has

𝑋 ⊆ 𝑉(𝐺) of cost 𝑐𝑚 – 𝑘/2 𝑘
2

Cost effective subgraph is NP-hard

𝑐 𝑚 −
𝑘

2
+ 𝑘

𝑘

2
= 𝑐𝑚 – 𝑘/2

𝑘

2

𝑘-clique

(⇒)

(⇐) Calculate stuff, show that only a 𝑘-clique can

achieve this cost (not even a (𝑘 + 1)-clique.

Manuel Lafond

Reduction from CLIQUE.

Take CLIQUE instance (𝐺, 𝑘).

Put 𝑐 = 3𝑘/2

Graph 𝐺 has a clique of size 𝑘 if and only if 𝐺 has

𝑋 ⊆ 𝑉(𝐺) of cost 𝑐𝑚 – 𝑘/2 𝑘
2

Cost-effective subgraph is W[1]-hard with
respect to parameter 𝑐.

Unknown: hardness w.r.t. 𝑐𝑜𝑠𝑡(𝑋).

Cost effective subgraph is NP-hard

Manuel Lafond

Back to our main problem

Manuel Lafond

The reverse of a TD is a contraction

𝐴𝑋𝑋𝐵 → 𝐴𝑋𝐵

Observation

𝑑(𝑆, 𝑇) ≤ 𝑘 iff 𝑇 can be transformed into 𝑆 using
𝑘 contractions

Contractions

abcabbcabcabc
abcabcabc
abcabc
abc

Manuel Lafond

Given a Cost-effective Subgraph instance (𝐺, 𝑐)

Design strings 𝑆 and 𝑇 so that
𝑇 = 𝑆∗𝐸1𝐸2 … 𝐸𝑝

where:

▪ 𝑆∗is generated from 𝑆

▪ Each 𝐸𝑖 is a gadget substring for edge 𝑒𝑖 of 𝐺

▪ to go from 𝑇 to 𝑆, we must:

1) contract 𝑆∗ to some intermediate 𝑆′

2) use 𝑆′ to contract all the 𝐸𝑖's

3) contract 𝑆′ into 𝑆

Idea of the reduction

Manuel Lafond

𝑆∗𝐸1𝐸2𝐸3𝐸4

𝑆′𝐸1𝐸2𝐸3𝐸4

𝑆′𝐸2𝐸3𝐸4

𝑆′𝐸3𝐸4

𝑆′𝐸4

𝑆′
𝑆

Form of solutions

𝑇 =

Manuel Lafond

𝑆∗𝐸1𝐸2𝐸3

Idea of the reduction

𝑇 =

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

Manuel Lafond

𝑆∗𝐸1𝐸2𝐸3

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

Manuel Lafond

𝑆∗𝐸1𝐸2𝐸3

𝑆′𝐸1𝐸2𝐸3

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

Manuel Lafond

𝑆∗𝐸1𝐸2𝐸3

𝑺′𝑬𝟏𝐸2𝐸3

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

Both endpoints of 𝐸1 are chosen =>
𝑆′ can gobble up 𝐸1 in |𝑋| − 2

contractions.

Manuel Lafond

𝑆∗𝐸1𝐸2𝐸3

𝑆′𝐸1𝐸2𝐸3

𝑺′𝑬𝟐𝐸3

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

Both endpoints of 𝐸2 are chosen =>
𝑆′ can gobble up 𝐸2 in |𝑋| − 2

contractions.

Manuel Lafond

𝑆∗𝐸1𝐸2𝐸3

𝑆′𝐸1𝐸2𝐸3

𝑆′𝐸2𝐸3

𝑺′𝑬𝟑

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

An endpoint of 𝐸3 is NOT chosen =>
𝑆′ CANNOT gobble up 𝐸3. Must use

mystery 𝑀 using 𝒄 contractions.

Manuel Lafond

𝑆∗𝐸1𝐸2𝐸3

𝑆′𝐸1𝐸2𝐸3

𝑆′𝐸2𝐸3

𝑆′𝐸3

𝑆′

Idea of the reduction

𝑇 = 𝑆∗ = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣3𝑣4𝑣4𝑀
𝑆′ = 𝑣1𝑣2𝑣3𝑣4𝑣4𝑀
represents choosing 𝑋 = {𝑣1, 𝑣2, 𝑣3}

𝐸1 = 𝑣1𝑣2𝑣3𝑣3𝑣4𝑣4𝑀

𝑣2 𝑣1

𝑣3 𝑣4

𝑆 = 𝑣1𝑣2𝑣3𝑣4𝑀 (𝑀 is a Mystery substring)

𝑒1

𝑒2

𝑒3

𝐸2 = 𝑣1𝑣1𝑣2𝑣3𝑣4𝑣4𝑀

𝐸3 = 𝑣1𝑣1𝑣2𝑣2𝑣3𝑣4𝑀

Summary: choose intermediate
𝑆′ so that corresponding 𝑋 is such
that:
- 𝐸𝑖's contained in 𝑋 cost |𝑋| − 2
- 𝐸𝑖's not contained in 𝑋 cost 𝑐

Same as in cost-effective problem.

Reduction is technical to ensure
that all solutions have this form.

Manuel Lafond

Theorem

If 𝑆 is exemplar (each character occurs once),
then 𝑑(𝑆, 𝑇) can be computed in time

2𝑂(𝑘2) + 𝑝𝑜𝑙𝑦 𝑛 .

FPT result

Manuel Lafond

Idea

Breakpoint in 𝑆 = consecutive characters 𝑥𝑦 in 𝑆
such that in 𝑇, either :

• some 𝑥 is not followed by 𝑦; or

• some 𝑦 is not preceded by 𝑥.

FPT Result

S = abcdefghi
T = abcdecdefghi

Manuel Lafond

Idea

Breakpoint in 𝑆 = consecutive characters 𝑥𝑦 in 𝑆
such that in 𝑇, either :

• some 𝑥 is not followed by 𝑦; or

• some 𝑦 is not preceded by 𝑥.

FPT Result

S = ab|cde|fghi
T = abcdecdefghi

Manuel Lafond

Idea

Breakpoint in 𝑆 = consecutive characters 𝑥𝑦 in 𝑆
such that in 𝑇, either :

• some 𝑥 is not followed by 𝑦; or

• some 𝑦 is not preceded by 𝑥.

A TD creates at most two breakpoints

FPT Result

S = ab|cde|fghi
T = abcdecdefghi

Manuel Lafond

Idea

Breakpoint in 𝑆 = consecutive characters 𝑥𝑦 in 𝑆
such that in 𝑇, either :

• some 𝑥 is not followed by 𝑦; or

• some 𝑦 is not preceded by 𝑥.

A TD creates at most two breakpoints

• If 𝑑(𝑆, 𝑇) ≤ 𝑘, then 𝑆 has at most 2𝑘 breakpoints.

FPT Result

S = ab|cde|fghi
T = abcdecdefghi

Manuel Lafond

Lemma

Let 𝑋1, … , 𝑋𝑙 be the maximal substrings of 𝑆
that have no breakpoint. Obtain 𝑆′ and 𝑇′ by
replacing every occurrence of 𝑋1, … , 𝑋𝑙 by a
single, distinct character in 𝑆 and 𝑇.

Then 𝑑 𝑆, 𝑇 = 𝑑 𝑆′, 𝑇′ .

S = ab|cde|fghi
T = abcdecdefghi

S' = X1X2X3

T' = X1X2X2X3

Manuel Lafond

At most 2𝑘 breakpoints

 𝑆′ has at most 2𝑘 + 1 characters

 𝑇′ has length at most (2k + 1)2𝑘

 Branching over every sequence of 𝑘 TDs

explores 𝑂 (𝑘2𝑘)2𝑘 possibilities, hence the

2𝑂(𝑘2)𝑝𝑜𝑙𝑦 𝑛 complexity.

Manuel Lafond

Computing the TD distance is NP-hard

Potentially useful Cost-effective subgraph
problem

When having to balance a number of chosen
elements vs diminishing returns on size

FPT result on exemplar substrings

Breakpoint lemma might hold for other types of
edit operations, e.g. deletions, transpositions, ...

Summary

Manuel Lafond

Complexity of deciding whether 𝑆 can
generate 𝑇.

Open even for ternary alphabets.

Complexity of 𝑑(𝑆, 𝑇) on fixed size alphabets.

Probably NP-hard for ternary, no idea for binary.

FPT if 𝑆 is not exemplar?

Complexity if length of a dup is bounded by a
constant 𝑐? Is 𝑡𝑑(𝑆) context-free in this
setting?

Open problems

