The tandem duplication

distance is NP-hard
Manuel Lafond, Binhai Zhu, Peng Zou

MONTANA

STATE UNIVERSITY

UNIVERSITE DE

SHERBROOKE

Manuel Lafond

Tandem duplications

e Tandem duplication (TD)

« String operation that copies a substring and
pastes it right after.

e AXB - AXXB
« X could be any substring

e e.g. abcbcabc > abcbcacbcabc

Manuel Lafond

Tandem duplication distance

e Tandem duplication distance

« d(S,T) = minimum number of TDs required to
transform S into T

Manuel Lafond

Tandem duplication distance

e Tandem duplication distance

« d(S,T) = minimum number of TDs required to
transform S into T

abc

abcabbcabcabc

Manuel Lafond

Tandem duplication distance

e Tandem duplication distance

« d(S,T) = minimum number of TDs required to
transform S into T

abc
abcabc

abcabbcabcabc

Manuel Lafond

Tandem duplication distance

e Tandem duplication distance

« d(S,T) = minimum number of TDs required to
transform S into T

abc
abcabc

abcabbcabcabc

Manuel Lafond

Tandem duplication distance

e Tandem duplication distance

« d(S,T) = minimum number of TDs required to
transform S into T

0C
bcabc
pcabcabc
pcabbcabcabc

O QD

Manuel Lafond

Tandem duplication distance

e Tandem duplication distance

« d(S,T) = minimum number of TDs required to
transform S into T

NC
hcabc
bcabcabc

hcabbcabcabc

L QD

Manuel Lafond

Tandem duplication distance

e Tandem duplication distance

« d(S,T) = minimum number of TDs required to
transform S into T

NC
hcabc
bcabcabc

bcabbcabcabc

L QL

Manuel Lafond

Tandem duplication distance

e Tandem duplication distance

« d(S,T) = minimum number of TDs required to

transform S

DC

L QL

Hcal
Hcal

intoT

NC

bcabc d(S(’I Qk)‘ 3
bbcabcabc

hcal

Manuel Lafond

e Extensively studied in bioinformatics
« Most common dup mechanism [Szostak 1980]
« Occurs in cancer [Oesper & al. 2010]
« Gene clusters evolve by TD [Gascuel & al. 2003]

r
GE18151 GE18152 chimera GE18152° , GE18153
]

TN L S e N e R o ey

e TD language of a string S
« td(S) = strings that can be generated from S by TDs

e Introduced in for copying systems
« [Andrzej & Rozenberg, DAM 1984]
o If S is in binary, then td(S) is regular
» Otherwise, td(S) is not regular

Manuel Lafond

e TD language of a string S
« td(S) = strings that can be generated from S by TDs

e Introduced in for copying systems
« [Andrzej & Rozenberg, DAM 1984]
o If S is in binary, then td(S) is regular
» Otherwise, td(S) is not regular

e Rediscovered in 2004
« [Leupold, Mitrana & Sempere, DAM, 2004]
« Other formal language questions studied

Manuel Lafond

e In [Leupold & al. 2004]
« Open problem: given S, T, decide if T is in td(S).
» Easy for binary alphabets, otherwise unknown
« Open problem: complexity of computing d(S,T)

* Unknown even on binary alphabet

Manuel Lafond

e In [Leupold & al. 2004]
« Open problem: given S, T, decide if T is in td(S5).

» Easy for binary alphabets, otherwise unknown
« Open problem: complexity of computing d(S,T)
* Unknown even on binary alphabet
e In [Alon & al., IEEE TolT, 2017]
« Max value of d(S,T) in terms of |T| (if well-defined)
. If S is binary and square-free, then d(S,T) € ©(|T|)
« Also ask about the complexity of d(S,T)

Manuel Lafond

Our contributions

e Computing d(S,T) is NP-hard.
« Even if Sis exemplar. has no duplicate character.

«+ Solves the 15 years-old open problem of Leupold &
al.

e Reduction from new NP-hard problem

« Cost-Effective Subgraph (bonus W|1]-hardness
result)

e FPT result: if S is exemplar, d(S,T) can be found in time
2°¢Dpoly(n)

Manuel Lafond

NP hardness

e Reduction from Cost-effective subgraph
problem

Manuel Lafond

Cost effective subgraph

e Let G be agraph andletc € N.
e ForX CcV(G),letE(X) ={uv e E(G):u,v € X}
o cost(X) = c(|E(G)| — [ECX)]) + IX||EX)]

Ol

k-clique

Cost effective subgraph

e Let G be agraph andletc € N.
e ForX CcV(G),letE(X) ={uv e E(G):u,v € X}
o cost(X) = c(|E(G)| — [ECX)]) + IX||EX)]

« We pay c for each edge not in X, and |X| for each
edge inside X.

» Generalization: each edge in X costs f(|X]).

Ol

k-clique

Cost effective subgraph

e Let G be agraph andletc € N.
e ForX CcV(G),letE(X) ={uv e E(G):u,v € X}
o cost(X) = c(|E(G)| — [ECX)]) + IX||EX)]

« We pay c for each edge not in X, and |X| for each
edge inside X.

» Generalization: each edge in X costs f(|X]).

e Want to contain many edges, but diminishing
returns on size of X.

Manuel Lafond

Cost effective subgraph

e Given: graph G, cost ¢, integer k
e Q:isthere X € V(G) such that cost(X) < k?

Manuel Lafond

Cost effective subgraph is NP-hard

¢ Reduction from CLIQUE.
« Take CLIQUE instance (G, k).
e Putc = 3k/2

« Graph G has a clique of size k if and only if G has
X € V(G)ofcostem- k/2 (’2‘)

(=)

() () =om- v ()

(<) Calculate stuff, show that only a k-clique can
achieve this cost (not even a (k + 1)-clique.

k-clique

Cost effective subgraph is NP-hard

¢ Reduction from CLIQUE.
« Take CLIQUE instance (G, k).
e Putc = 3k/2

« Graph G has a clique of size k if and only if G has
X € V(G)ofcostem- k/2 (’2‘)

o Cost-effective subgraph is W|1]-hard with
respect to parameter c.

« Unknown: hardness w.r.t. cost(X).

Manuel Lafond

Back to our main problem

Manuel Lafond

Contractions

e The reverse of a TD is a contraction
e AXXB - AXB

e Observation

e« d(5,T) < kiff T can be transformed into S using
k contractions

pcabbcabcabc
pcabcabc
bcabc

ofs

Manuel Lafond

QR QD

Idea of the reduction

e Given a Cost-effective Subgraph instance (G, ¢)

e Design strings S and T so that
T = S'E\E, ...Ep

where:
- S"is generated from S
- Each E; is a gadget substring for edge e; of G
- togo from T to S, we must:

1) contract S* to some intermediate S’

2) use S’ to contract all the E's

3) contract S’ into S

Manuel Lafond

Form of solutions

T = S*E,E,E.E,
S'E,E,E.E,
S'E,E.E,
S'E.E,

S'E,
SI
S

Manuel Lafond

Idea of the reduction

S =vv,v,v,M (M is a Mystery substring)
T = S"E,E,E,
Vo1 o,

Idea of the reduction

S =vv,v,v,M (M is a Mystery substring)
T = S"E,E,E, S* = v,v,v,v,0V,0,V,M
£, =vv,vvv,v,M
£, =vv,v,vv,v,M

I
1

v,V V, V0,030, M

Idea of the reduction

S =vv,v,v,M (M is a Mystery substring)
T = S"E,E,E, S* = v,v,v,v,0V,0,V,M
S'EE,E S' = vvvv,v,M

represents choosing X = {v,,v,, v}
£, =vv,vvv,v,M
£, =vv,v,vv,v,M

£, =vvv,v,v,0,M

Idea of the reduction

S =vv,v,v,M (M is a Mystery substring)
T = S"E,E,E, S* = v,v,v,v,0V,0,V,M
S'E.E,E, S' = vvvv,v,M

represents choosing X = {v,,v,, v}
£, =vv,vvv,v,M
£, =vv,v,vv,v,M
E,=vv,v,v,0,0,M

V010 v
Both endpoints of E, are chosen =>
€, S’ can gobble up E, in |X| — 2
Vg - v, contractions.
3

Manuel Lafond

Idea of the reduction

S =vv,v,v,M (M is a Mystery substring)
T = Sj‘ElEZE3 S* = v,v,v,v,0V,0,V,M
!
S'ELELE, S = vw,vv,v,M
S,EZES represents choosing X = {v,, v,, V3}

£, =vv,vvv,v,M
£, =vv,v,vv,v,M
E,=vv,v,v,0,0,M

V010 v
Both endpoints of E, are chosen =>
€, S’ can gobbleup E, in |X| — 2
Vg - v, contractions.
3

Manuel Lafond

Idea of the reduction

S =vv,v,v,M (M is a Mystery substring)
T = Sj‘ElEZE3 S* = v,v,v,v,0V,0,V,M
!
S'ELELE, S = vw,vv,v,M
S’E2E3 represents choosing X = {v,, v,, V3}
S'E, E, =vw,vvv,v,M

£, =vv,v,vv,v,M
£, =vvv,v,v,0,M

V010 v
An endpoint of E; is NOT chosen =>
€2 S' CANNOT gobble up E;. Must use
Vs o Uy mystery M using ¢ contractions.
3

Manuel Lafond

Idea of the reduction

S =v,v,vv,M

T = S*F 1 E 5 E 3 Summary: choose intermediate
S'E.E.E S’ so that corresponding X is such
S L2 that:
S E2E3 - E,'s contained in X cost |X| — 2
S'E3 - E,'snot contained in X costc
Sl
Same as in cost-effective problem.
e .. :
U, 1 V4 Reduction is technical to ensure
that all solutions have this form.
€2
(¥ (¥
3 4
€3

Manuel Lafond

FPT result

Theorem

If S is exemplar (each character occurs once),
then d(S,T) can be computed in time

20(k%) 4 poly(n).

Manuel Lafond

FPT Result

e Idea

« Breakpointin S = consecutive characters xy in S
such thatin T, either:

* some x is not followed by y; or
* some Y is not preceded by x.

S = abcdefghi
T = abcdecdefghi

Manuel Lafond

FPT Result

e Idea

« Breakpointin S = consecutive characters xy in S
such thatin T, either:

* some x is not followed by y; or
* some Y is not preceded by x.

S = ab|cde|fghi
T = abcdecdefghi

Manuel Lafond

FPT Result

e Idea

« Breakpointin S = consecutive characters xy in S
such thatin T, either:

* some x is not followed by y; or
* some Y is not preceded by x.

« A TD creates at most two breakpoints

S = ab|cde|fghi
T = abcdecdefghi

Manuel Lafond

FPT Result

e Idea

« Breakpointin S = consecutive characters xy in S
such thatin T, either:

* some x is not followed by y; or
* some Y is not preceded by x.

« A TD creates at most two breakpoints
* Ifd(S,T) < k,then S has at most 2k breakpoints.

S = ab|cde|fghi
T = abcdecdefghi

Manuel Lafond

Lemma

Let X, ..., X; be the maximal substrings of S
that have no breakpoint. Obtain S’ and T’ by
replacing every occurrence of X, ..., X; by a
single, distinct character in S and T.

Thend(S,T) =d(S',T').

S = ab|cde|fghi S'=X,X,X;
T = abcdecdefghi T' = X X, X, X,

Manuel Lafond

At most 2k breakpoints

- S" has at most 2k + 1 characters

- T' has length at most (2k + 1)2*

= Branching over every sequence of k TDs

explores O ((ka)ZI‘) possibilities, hence the
20 10ly(n) complexity.

Manuel Lafond

e Computing the TD distance is NP-hard

e Potentially useful Cost-effective subgraph
problem

« When having to balance a number of chosen
elements vs diminishing returns on size

e FPT result on exemplar substrings

« Breakpoint lemma might hold for other types of
edit operations, e.g. deletions, transpositions, ...

Manuel Lafond

Open problems

e Complexity of deciding whether S can
generate T.

« Open even for ternary alphabets.

e Complexity of d(S, T) on fixed size alphabets.
« Probably NP-hard for ternary, no idea for binary.

e FPT if S is not exemplar?

e Complexity if length of a dup is bounded by a
constant c? Is td(S) context-free in this
setting?

Manuel Lafond

