The tandem duplication distance is NP-hard

Manuel Lafond, Binhai Zhu, Peng Zou

UNIVERSITÉ DE SHERBROOKE

Tandem duplications

- Tandem duplication (TD)
- String operation that copies a substring and pastes it right after.
- $A X B \rightarrow A X X B$
- X could be any substring
- e.g. abcbcabc \rightarrow abcbcacbcabc

Tandem duplication distance

- Tandem duplication distance
- $d(S, T)=$ minimum number of TDs required to transform S into T

Tandem duplication distance

- Tandem duplication distance
- $d(S, T)=$ minimum number of TDs required to transform S into T
abc
abcabbcabcabc

Tandem duplication distance

- Tandem duplication distance
- $d(S, T)=$ minimum number of TDs required to transform S into T
abc
abcabc
abcabbcabcabc

Tandem duplication distance

- Tandem duplication distance
- $d(S, T)=$ minimum number of TDs required to transform S into T
abc
abcabc
abcabbcabcabc

Tandem duplication distance

- Tandem duplication distance
- $d(S, T)=$ minimum number of TDs required to transform S into T
abc
abcabc abcabcabc abcabbcabcabc

Tandem duplication distance

- Tandem duplication distance
- $d(S, T)=$ minimum number of TDs required to transform S into T
abc
abcabc abcabcabc abcabbcabcabc

Tandem duplication distance

- Tandem duplication distance
- $d(S, T)=$ minimum number of TDs required to transform S into T
abc
abcabc abcabcabc abcabbcabcabc

Tandem duplication distance

- Tandem duplication distance
- $d(S, T)=$ minimum number of TDs required to transform S into T
abc
abcabc
abcabcabc
$\underset{(1 \text { think) }}{(S, T)}=3$
abcabbcabcabc

Some history

- Extensively studied in bioinformatics
- Most common dup mechanism [Szostak 1980]
- Occurs in cancer [Oesper \& al. 2010]
- Gene clusters evolve by TD [Gascuel \& al. 2003]

Some history

- TD language of a string S
- $t d(S)=$ strings that can be generated from S by TDs
- Introduced in for copying systems
- [Andrzej \& Rozenberg, DAM 1984]
- If S is in binary, then $\operatorname{td}(S)$ is regular
- Otherwise, $t d(S)$ is not regular

Some history

- TD language of a string S
- $\operatorname{td}(S)=$ strings that can be generated from S by TDs
- Introduced in for copying systems
- [Andrzej \& Rozenberg, DAM 1984]
- If S is in binary, then $\operatorname{td}(S)$ is regular
- Otherwise, $t d(S)$ is not regular
- Rediscovered in 2004
- [Leupold, Mitrana \& Sempere, DAM, 2004]
- Other formal language questions studied

Some history

- In [Leupold \& al. 2004]
- Open problem: given S, T, decide if T is in $t d(S)$.
- Easy for binary alphabets, otherwise unknown
- Open problem: complexity of computing $d(S, T)$
- Unknown even on binary alphabet

Some history

- In [Leupold \& al. 2004]
- Open problem: given S, T, decide if T is in $t d(S)$.
- Easy for binary alphabets, otherwise unknown
- Open problem: complexity of computing $d(S, T)$
- Unknown even on binary alphabet
- In [Alon \& al., IEEE ToIT, 2017]
- Max value of $d(S, T)$ in terms of $|T|$ (if well-defined)
- If S is binary and square-free, then $d(S, T) \in \Theta(|T|)$
- Also ask about the complexity of $d(S, T)$

Our contributions

- Computing $d(S, T)$ is NP-hard.
- Even if S is exemplar: has no duplicate character.
- Solves the 15 years-old open problem of Leupold \& al.
- Reduction from new NP-hard problem
- Cost-Effective Subgraph (bonus W[1]-hardness result)
- FPT result: if S is exemplar, $d(S, T)$ can be found in time $2^{o\left(k^{2}\right)} \operatorname{poly}(n)$
- Reduction from Cost-effective subgraph problem

Cost effective subgraph

- Let G be a graph and let $c \in \mathbb{N}$.
- For $X \subseteq V(G)$, let $E(X)=\{u v \in E(G): u, v \in X\}$
- $\operatorname{cost}(X)=c(|E(G)|-|E(X)|)+|X||E(X)|$

$$
c\left(m-\binom{k}{2}\right)+k\binom{k}{2}
$$

k-clique

Cost effective subgraph

- Let G be a graph and let $c \in \mathbb{N}$.
- For $X \subseteq V(G)$, let $E(X)=\{u v \in E(G): u, v \in X\}$
- $\operatorname{cost}(X)=c(|E(G)|-|E(X)|)+|X||E(X)|$
- We pay c for each edge not in X, and $|X|$ for each edge inside X.
- Generalization: each edge in X costs $f(|X|)$.

$$
c\left(m-\binom{k}{2}\right)+k\binom{k}{2}
$$

k-clique

Cost effective subgraph

- Let G be a graph and let $c \in \mathbb{N}$.
- For $X \subseteq V(G)$, let $E(X)=\{u v \in E(G): u, v \in X\}$
- $\operatorname{cost}(X)=c(|E(G)|-|E(X)|)+|X||E(X)|$
- We pay c for each edge not in X, and $|X|$ for each edge inside X.
- Generalization: each edge in X costs $f(|X|)$.
- Want to contain many edges, but diminishing returns on size of X.

Cost effective subgraph

- Given: graph G, cost c, integer k
- Q : is there $X \subseteq V(G)$ such that $\operatorname{cost}(X) \leq k$?

Cost effective subgraph is NP-hard

- Reduction from CLIQUE.
- Take CLIQUE instance (G, k).
- Put $c=3 k / 2$
- Graph G has a clique of size k if and only if G has $X \subseteq V(G)$ of cost $c m-k / 2\binom{k}{2}$

k-clique

$$
\begin{aligned}
& (\Rightarrow) \\
& c\left(m-\binom{k}{2}\right)+k\binom{k}{2}=c m-k / 2\binom{k}{2}
\end{aligned}
$$

(\Leftarrow) Calculate stuff, show that only a k-clique can achieve this cost (not even a $(k+1)$-clique.

Cost effective subgraph is NP-hard

- Reduction from CLIQUE.
- Take CLIQUE instance (G, k).
- Put $c=3 k / 2$
- Graph G has a clique of size k if and only if G has $X \subseteq V(G)$ of cost $c m-k / 2\binom{k}{2}$
- Cost-effective subgraph is W[1]-hard with respect to parameter c.
- Unknown: hardness w.r.t. $\operatorname{cost}(X)$.

Back to our main problem

Contractions

- The reverse of a TD is a contraction
- $A X X B \rightarrow A X B$
- Observation
- $d(S, T) \leq k$ iff T can be transformed into S using k contractions
abcabbcabcabc abcabcabc abcabc abc

Idea of the reduction

- Given a Cost-effective Subgraph instance (G, c)
- Design strings S and T so that

$$
T=S^{*} E_{1} E_{2} \ldots E_{p}
$$

where:

- S^{*} is generated from S
- Each E_{i} is a gadget substring for edge e_{i} of G
- to go from T to S, we must:

1) contract S^{*} to some intermediate S^{\prime}
2) use S^{\prime} to contract all the E_{i} 's
3) contract S^{\prime} into S

Form of solutions

$$
\begin{aligned}
& T= S^{*} E_{1} E_{2} E_{3} E_{4} \\
& S^{\prime} E_{1} E_{2} E_{3} E_{4} \\
& S^{\prime} E_{2} E_{3} E_{4} \\
& S^{\prime} E_{3} E_{4} \\
& S^{\prime} E_{4} \\
& S^{\prime} \\
& S
\end{aligned}
$$

Idea of the reduction

$S=v_{1} v_{2} v_{3} v_{4} M \quad(M$ is a Mystery substring)
$T=S^{*} E_{1} E_{2} E_{3}$

Idea of the reduction

$S=v_{1} v_{2} v_{3} v_{4} M$ $T=S^{*} E_{1} E_{2} E_{3}$
(M is a Mystery substring)

$$
S^{*}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{3} v_{4} v_{4} M
$$

$$
E_{1}=v_{1} v_{2} v_{3} v_{3} v_{4} v_{4} M
$$

$$
E_{2}=v_{1} v_{1} v_{2} v_{3} v_{4} v_{4} M
$$

$$
E_{3}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{4} M
$$

Idea of the reduction

$S=v_{1} v_{2} v_{3} v_{4} M$
$T=S^{*} E_{1} E_{2} E_{3}$ $S^{\prime} E_{1} E_{2} E_{3}$
(M is a Mystery substring)

$$
\begin{aligned}
& S^{*}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{3} v_{4} v_{4} M \\
& S^{\prime}=v_{1} v_{2} v_{3} v_{4} v_{4} M \\
& \text { represents choosing } X=\left\{v_{1}, v_{2}, v_{3}\right\} \\
& E_{1}=v_{1} v_{2} v_{3} v_{3} v_{4} v_{4} M \\
& E_{2}=v_{1} v_{1} v_{2} v_{3} v_{4} v_{4} M \\
& E_{3}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{4} M
\end{aligned}
$$

Idea of the reduction

$S=v_{1} v_{2} v_{3} v_{4} M$
$T=S^{*} E_{1} E_{2} E_{3}$ $\boldsymbol{S}^{\prime} \boldsymbol{E}_{1} E_{2} E_{3}$
(M is a Mystery substring)

$$
\begin{aligned}
& S^{*}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{3} v_{4} v_{4} M \\
& S^{\prime}=v_{1} v_{2} v_{3} v_{4} v_{4} M \\
& \text { represents choosing } X=\left\{v_{1}, v_{2}, v_{3}\right\} \\
& E_{1}=v_{1} v_{2} v_{3} v_{3} v_{4} v_{4} M \\
& E_{2}=v_{1} v_{1} v_{2} v_{3} v_{4} v_{4} M \\
& E_{3}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{4} M
\end{aligned}
$$

Both endpoints of E_{1} are chosen => S^{\prime} can gobble up E_{1} in $|X|-2$ contractions.

Idea of the reduction

$S=v_{1} v_{2} v_{3} v_{4} M$
$T=S^{*} E_{1} E_{2} E_{3}$ $S^{\prime} E_{1} E_{2} E_{3}$ $\boldsymbol{S}^{\prime} \boldsymbol{E}_{2} E_{3}$
(M is a Mystery substring)

$$
\begin{aligned}
& S^{*}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{3} v_{4} v_{4} M \\
& S^{\prime}=v_{1} v_{2} v_{3} v_{4} v_{4} M \\
& \text { represents choosing } X=\left\{v_{1}, v_{2}, v_{3}\right\} \\
& E_{1}=v_{1} v_{2} v_{3} v_{3} v_{4} v_{4} M \\
& E_{2}=v_{1} v_{1} v_{2} v_{3} v_{4} v_{4} M \\
& E_{3}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{4} M
\end{aligned}
$$

Both endpoints of E_{2} are chosen => S^{\prime} can gobble up E_{2} in $|X|-2$ contractions.

Idea of the reduction

$S=v_{1} v_{2} v_{3} v_{4} M$
$T=S^{*} E_{1} E_{2} E_{3}$

$$
S^{\prime} E_{1} E_{2} E_{3}
$$

$$
S^{\prime} E_{2} E_{3}
$$

$\boldsymbol{S}^{\prime} \boldsymbol{E}_{3}$
(M is a Mystery substring)

$$
\begin{aligned}
& S^{*}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{3} v_{4} v_{4} M \\
& S^{\prime}=v_{1} v_{2} v_{3} v_{4} v_{4} M \\
& \text { represents choosing } X=\left\{v_{1}, v_{2}, v_{3}\right\} \\
& E_{1}=v_{1} v_{2} v_{3} v_{3} v_{4} v_{4} M \\
& E_{2}=v_{1} v_{1} v_{2} v_{3} v_{4} v_{4} M \\
& E_{3}=v_{1} v_{1} v_{2} v_{2} v_{3} v_{4} M
\end{aligned}
$$

An endpoint of E_{3} is NOT chosen => S^{\prime} CANNOT gobble up E_{3}. Must use mystery M using c contractions.

Idea of the reduction

Summary: choose intermediate S^{\prime} so that corresponding X is such that:

- E_{i} 's contained in X cost $|X|-2$
- E_{i} 's not contained in $X \operatorname{cost} c$

Same as in cost-effective problem.
Reduction is technical to ensure that all solutions have this form.

FPT result

Theorem

If S is exemplar (each character occurs once), then $d(S, T)$ can be computed in time

$$
2^{O\left(k^{2}\right)}+\operatorname{poly}(n)
$$

FPT Result

- Idea
- Breakpoint in $S=$ consecutive characters $x y$ in S such that in T, either :
- some x is not followed by y; or
- some y is not preceded by x.

S = abcdefghi
T = abcdecdefghi

FPT Result

- Idea
- Breakpoint in $S=$ consecutive characters $x y$ in S such that in T, either :
- some x is not followed by y; or
- some y is not preceded by x.

$$
\begin{aligned}
& S=\text { ab|cde|fghi } \\
& T=\text { abcdecdefghi }
\end{aligned}
$$

FPT Result

- Idea
- Breakpoint in $S=$ consecutive characters $x y$ in S such that in T, either :
- some x is not followed by y; or
- some y is not preceded by x.
- A TD creates at most two breakpoints

$$
\begin{aligned}
& S=\text { ab|cde|fghi } \\
& T=\text { abcdecdefghi }
\end{aligned}
$$

FPT Result

- Idea
- Breakpoint in $S=$ consecutive characters $x y$ in S such that in T, either :
- some x is not followed by y; or
- some y is not preceded by x.
- A TD creates at most two breakpoints
- If $d(S, T) \leq k$, then S has at most $2 k$ breakpoints.

$$
\begin{aligned}
& \mathrm{S}=\text { ab|cde|fghi } \\
& \mathrm{T}=\text { abcdecdefghi }
\end{aligned}
$$

Lemma

Let X_{1}, \ldots, X_{l} be the maximal substrings of S that have no breakpoint. Obtain S^{\prime} and T^{\prime} by replacing every occurrence of X_{1}, \ldots, X_{l} by a single, distinct character in S and T.
Then $d(S, T)=d\left(S^{\prime}, T^{\prime}\right)$.

$$
\begin{array}{ll}
\mathrm{S}=\text { ab|cde|fghi } & \mathrm{S}^{\prime}=\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \\
\mathrm{~T}=\text { abcdecdefghi } & \mathrm{T}^{\prime}=\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{2} \mathrm{X}_{3}
\end{array}
$$

At most $2 k$ breakpoints
$\Rightarrow S^{\prime}$ has at most $2 k+1$ characters
$\Rightarrow T^{\prime}$ has length at most $(2 \mathrm{k}+1) 2^{k}$
\Rightarrow Branching over every sequence of k TDs explores $O\left(\left(k 2^{k}\right)^{2 k}\right)$ possibilities, hence the $2^{O\left(k^{2}\right)}$ poly (n) complexity.

Summary

- Computing the TD distance is NP-hard
- Potentially useful Cost-effective subgraph problem
- When having to balance a number of chosen elements vs diminishing returns on size
- FPT result on exemplar substrings
- Breakpoint lemma might hold for other types of edit operations, e.g. deletions, transpositions, ...

Open problems

- Complexity of deciding whether S can generate T.
- Open even for ternary alphabets.
- Complexity of $d(S, T)$ on fixed size alphabets.
- Probably NP-hard for ternary, no idea for binary.
- FPT if S is not exemplar?
- Complexity if length of a dup is bounded by a constant c ? Is $t d(S)$ context-free in this setting?

