WILL WE EVER FIND A FORBIDDEN SUBGRAPH CHARACTERIZATION OF LEAF POWERS?

Manuel Lafond, Université de Sherbrooke, Canada

Tree *T*, leafset denoted L(T), leaves have distinct labels

• T^k : *k*-th power of *T*

•
$$V(T^k) = V(T)$$

• $uv \in E(T^k) \Leftrightarrow dist_T(u,v) \leq k$

• The *k*-th leaf power of *T* is $T^{k}[L(T)]$, the subgraph induced by the leaves.

• The *k*-th leaf power of *T* is $T^{k}[L(T)]$, the subgraph induced by the leaves.

• The *k*-th leaf power of *T* is $T^{k}[L(T)]$, the subgraph induced by the leaves.

Definition A graph *G* is a *k*-leaf power if there exists a tree *T* such that $G = T^k[L(T)]$

Definition

A graph G is a *k***-leaf power** if there exists a tree T such that $G = T^k[L(T)]$

Definition (equivalent)

A graph *G* is a *k*-leaf power if there exists a tree *T* such that:

- L(T) = V(G)
- $uv \in E(G) \Leftrightarrow dist_T(u,v) \leq k$

Definition

A graph G is a **k-leaf power** if there exists a tree T such that $G = T^k[L(T)]$

Definition (equivalent)

A graph *G* is a *k*-leaf power if there exists a tree *T* such that:

- L(T) = V(G)
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

Definition

A graph *G* is a **leaf power** if there exists *k* such that *G* is a *k*-leaf power.

Definition

A graph G is a **k-leaf power** if there exists a tree T such that $G = T^k[L(T)]$

Definition (equivalent)

A graph *G* is a *k*-leaf power if there exists a tree *T* such that:

- L(T) = V(G)
- $uv \in E(G) \Leftrightarrow dist_T(u,v) \leq k$

Definition

A graph *G* is a **leaf power** if there exists *k* such that *G* is a *k*-leaf power.

Graph theoretical problems [Nishimura, Ragde, Thilikos, 2002]

- Provide a forbidden induced subgraph characterization of leaf powers.
- Provide a forbidden induced subgraph characterization of *k*-leaf powers, for every *k*.

Algorithmic problems

- Is deciding whether a graph is a leaf power in P?
- For fixed *k*, is deciding whether a graph is a *k*-leaf power in P?

In this talk

Graph theoretical problems

- Provide a forbidden induced subgraph characterization of leaf powers.

Conjecture (Nevries & Rosenke, 2015)

There are only a finite number of minimal strongly chordal graphs that are not leaf powers.

(implication: easy poly-time algorithm)

(L, 2018)

There is an infinity of minimal strongly chrodal graphs that are not leaf powers.

(implication: still no easy poly-time algorithm)

Orangutan

Human

Mouse

Rat

- Distance matrix.
- Noisy.
- Basic info: "near" or "far"
 - w.r.t some threshold

	G	0	H	Μ	R
G	0	0.33	0.25	0.52	0.61
0		0	0.31	0.61	0.36
Η			0	0.55	0.56
Μ				0	0.2
R					0

Orangutan

Human

Mouse

Rat

- Distance matrix.
- Noisy.
- Basic info: "near" or "far"
 - w.r.t some threshold

	G	0	Η	Μ	R
G	0	0.33	0.25	0.52	0.61
0		0	0.31	0.61	0.36
Η			0	0.55	0.56
Μ				0	0.2
R					0

threshold = 0.5

Orangutan

Human

Mouse

Rat

- Distance matrix.
- Noisy.
- Basic info: "near" or "far"
 - w.r.t some threshold

	G	0	Η	Μ	R
G	0	1	1	0	0
0		0	1	0	1
Η			0	0	0
Μ				0	1
R					0

Orangutan

Human

Mouse

- Distance matrix.
- Noisy.
- Basic info: "near" or "far"
 - w.r.t some threshold

	G	0	Η	Μ	R
G	0	1	1	0	0
0		0	1	0	1
Η			0	0	0
Μ				0	1
R					0

Orangutan

Human

Mouse

Rat

- This graph "makes sense" if we can find a tree T in which neighbors are "close", non-neighbors are "far".
- Does there exist k and a tree T with leafset V(G) satisfying

 $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

		G	0	Η	Μ	R
	G	0	1	1	0	0
	0		0	1	0	1
a	H			0	0	0
	Μ				0	1
	R					0

- This graph "makes sense" if we can find a tree T in which neighbors are "close", non-neighbors are "far".
- Does there exist k and a tree T with leafset V(G) satisfying

 $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

		G	0	Η	Μ	R
	G	0	1	1	0	0
 ۱	0		0	1	0	1
a 	H			0	0	0
	Μ				0	1
	R					0

So what do we know about leaf powers?

Proposition

A graph G is a 2-leaf power if and only if it contains no induced P_3 (a path of length 2).

<u>Theorem</u> [Dom, 2006] [Rautenbach, 2006]

A graph *G* is a 3-leaf power if and only if it is **chordal** and does not contain a bull, dart of gem as an induced subgraph.

<u>Theorem</u> [Brandstädt and Hundt, 2008] A graph *G* is a (twin-free) 4-leaf power if and only if it is **chordal** and does not contain any of these graphs:

Algorithmic results

<u>Theorem</u> [Chang & al., 2007]

5-leaf powers can be recognized in polynomial time.

<u>Theorem</u> [Eppstein, Havvaei, 2018] *k*-leaf powers with bounded degeneracy *d* can be recognized in time f(k, d)poly(n).

<u>Theorem</u> [Ducoffe, 2018]6-leaf powers can be recognized in polynomial time.[65 pages]

• If *G* is a leaf power, then *G* is chordal (i.e. every cycle of length at least 4 has a shortcut).

- If *G* is a leaf power, then *G* is chordal (i.e. every cycle of length at least 4 has a shortcut).
 - Idea: taking the power of a tree does not create chordless cycles.

- If *G* is a leaf power, then *G* is **chordal** (i.e. every cycle of length at least 4 has a shortcut).
 - Idea: taking the power of a tree does not create chordless cycles.
- If *G* is a leaf power, then *G* is **strongly chordal**.

• If *G* is a leaf power, then *G* is **strongly chordal**.

A graph is strongly chordal if it is chordal and k-sun-free, for every $k \ge 3$. A k-sun is the graph obtained by starting with a clique with vertices $v_1, \dots v_k$, and adding a common neighbor to each v_i, v_{i+1} pair.

<u>Open question (at the time)</u>

Are leaf powers exactly the strongly chordal graphs?

Open question (at the time)

Are leaf powers exactly the strongly chordal graphs? **NO**

Open question

Is there only one (minimal) strongly chordal graph that is not a leaf power?

Minimal in the sense that removing a vertex makes the graph a leaf power.

<u>Open question</u>

Is there only one (minimal) strongly chordal graph that is not a leaf power?

NO

There are at least 7 of them!

[Nevries & Rosenke, 2015]

$$G_4$$

 G_3

<u>Conjecture</u>

There are only a finite number of (minimal) strongly chordal graphs that are not leaf powers.

<u>Conjecture</u>

There are only a finite number of (minimal) strongly chordal graphs that are not leaf powers. **NO!**

<u>Theorem</u> [L, 2018]

There is an infinity of (minimal) strongly chordal graphs that are not leaf powers.

• Here's one of them

• Here's another

 In general: start with paths of length r and q, add spikes on edges, add all edges between paths vertices except four extremities.

 In general: start with paths of length r and q, add spikes on edges, add all edges between paths vertices except four extremities.

- Not too hard to prove strong chordality.
- But how do we prove non-leaf powerness?

Detecting non-leaf powers from quartets

- Mandatory quartet consistency
 - A new way of identifying non-leaf powers
- Definition: a tree T contains a quartet ab|cd if T has an edge that separates {a,b} from {c,d}

Assume that G is a leaf power explained by some tree T.

If G has one of these...

а

..then T must contain the ab|cd quartet.

Detecting non-leaf powers from quartets

- List every $2K_2$ and P_4 to infer the mandatory quartets Q.
- If no tree can possibly contain every quartet of Q, then G cannot be a leaf power.

Detecting non-leaf powers from quartets

For these graphs, can be shown to require every $a_i a_{i+1} | b_j b_{j+1}$, and $a_1 b_1 | a_r b_q$ which are known to admit no tree [Shutters et al., 2012]

Some trivia

- NP-hard to decide if a chordal graph contains a copy of some $G_{r,q}$
 - First non-leaf power certificate that we don't know how to check

- Conjecture: can recognize k-leaf powers explained by a f(k) bounded degree tree in poly(n) time.
 - Implications?
- Other necessary conditions based on alternating cycles (edge to non-edge alternation)

Conclusion

- Every question is still open
 - Complexity of recognizing leaf powers and k-leaf powers?
 - Forbidden subgraphs of leaf powers and k-leaf powers?
- Leaf powers and quartets
 - Question: is G a leaf power iff there is a tree that contains all its mandatory quartets?
 - Answer: no, but only one counter-example is known, the 3-sun. All other non-leaf powers have incompatible quartets.