RECONCILIATION BETWEEN GENE TREES AND SPECIES TREES IN THE PHYLOGENOMICS ERA

$\xrightarrow{\sim}$
Manuel Lafond
Université de Sherbrooke, Canada

Reconciliation in phylogenomics

\square Phylogenomics : evolutionary analysis that involves whole genomes or large portions of it.
\square Traditional reconciliation : single gene families
\square Phylogenomics reconciliation : many gene families

The plan

\square Part 1 : basics of multi-gene family reconciliation
\square Part 2 : reconciliation with segmental duplications + losses
\square Part 3 : reconciling syntenic blocks

Speciation

-

Duplication
Loss

Super-primate

Human-utan

Gibbons

Human

The big question

Given many gene trees, how to identify events that affect genes from several gene trees?

Segmental duplications, losses, transfers.
Whole genome duplications followed by block deletions

Reconciliation

Reconciliation identifies duplication, speciation and loss events in a gene tree G, using a species tree S.

Gene tree

S

Species tree

Reconciliation

Reconciliation identifies duplication, speciation and loss events in a gene tree G, using a species tree S.

Gene tree

S

Species tree

Reconciliation

Reconciliation identifies duplication, speciation and loss events in a gene tree G, using a species tree S..

Gene tree

S

Species tree

LCA Mapping

Gene tree

Species tree

LCA Mapping

Map each ancestral gene to the species that is the llowest common ancestor (LCA) of the descending mapped species.

Gene tree

Species tree

LCA Mapping

Map each ancestral gene to the species that is the llowest common ancestor (LCA) of the descending mapped species.

LCA Mapping

Map each ancestral gene to the species that is the lowest common ancestor (LCA) of the descending mapped species.

LCA Mapping

Map each ancestral gene to the species that is the lowest common ancestor (LCA) of the descending mapped species.
\square Rule: a node of G must be a Dup if it maps to the same species as a child.

LCA Mapping

Map each ancestral gene to the species that is the lowest common ancestor (LCA) of the descending mapped species.
\square Rule: a node of G must be a Dup if it maps to the same species as a child.
\square Each copy should be present in each species - otherwise, losses.

LCA Mapping

Now let's have more than one gene tree.

LCA Mapping

Now let's have more than one gene tree.

LCA Mapping

Now let's have more than one gene tree.

LCA Mapping

Now let's have more than one gene tree.

Maybe these duplications are the same! (e.g. a block duplication of a segment)

LCA Mapping

Now let's have more than one gene tree.

Maybe these duplications are the same! (e.g. a block duplication of a segment) If so, this Dup must have occurred in the E species.
$=>$ We must remap the D duplication.

LCA Mapping

Now let's have more than one gene tree.

Maybe these duplications are the same! (e.g. a block duplication of a segment) If so, this Dup must have occurred in the E species.
$=>$ We must remap the D duplication.

LCA Mapping

Now let's have more than one gene tree.

Maybe these duplications are the same! (e.g. a block duplication of a segment) If so, this Dup must have occurred in the E species.
$=>$ We must remap the D duplication.

1 DUP, 5 LOSSES (before, we had 2 DUPS, 3 LOSSES)

3) Find dups

Axioms of gene-species maps

\square A map m : $V(G) \quad V(S)$ is valid if
\square For a leaf $u, m(u)$ is the known species of gene u
\square Time-consistency: $m(u) \preccurlyeq m(\operatorname{parent}(u)$) for all non-root u.
\square A node u of G is a Dup if either
$\square m(u)=m\left(u^{\prime}\right)$ for some child u^{\prime} of u; or
$\square m(u) \neq l c a-\operatorname{map}(u)$

Axioms of gene-species maps

\square A map m : $V(G) \quad V(S)$ is valid if
\square For a leaf $u, m(u)$ is the known species of gene u
\square Time-consistency: $m(u) \preccurlyeq m(\operatorname{parent}(u)$) for all non-root u.
\square A node u of G is a Dup if either
$\square m(u)=m(u$ ') for some child u ' of u; or
$\square m(u) \neq l c a-\operatorname{map}(u)$
\square A gene loss must be inferred on the $u v$ branch for each species strictly between $m(u)$ and $m(v)$
\square But including $m(u)$ if u is a Dup

A brief survey of models of segmental duplications

Models of segmental duplications

\square Episode clustering EC
[Guigo, Muchnik \& Smith, Mol. Phylo \& evol 1996]

- Dup events contain all genes in the same species.
\square Gene duplication clustering GD
- [Fellows, Hallett \& Stege, ISAAC 1998]
\square Dup events have at most 1 gene per gene tree.
\square Minimum episode ME
\square [Bansal \& Eulenstein, Bioinformatics 2008]
\square Dup events do not contain a gene and one of its descendants.

Models of segmental duplications

\square Episode clustering EC [Guigo 1996]
\square Dup events can affect all genes in the same species.

Models of segmental duplications

\square Episode clustering EC
\square Dup events can affect all genes in the same species.

Models of segmental duplications

\square Episode clustering EC
\square Dup events can affect all genes in the same species.
\square Why not just remap every gene to F and have a single dup? Restriction needed.

\# of dups $=2$

Models of segmental duplications

\square Episode clustering EC
\square Restriction : if a node can be a speciation, it shall remain a speciation.

Models of segmental duplications

\square Episode clustering EC
\square Restriction : if a node can be a speciation, it shall remain a speciation.
\square Remapping e to f would prevent the speciation $=>$ forbidden.

Models of segmental duplications

\square Episode clustering EC
\square Restriction : if a node can be a speciation, it shall remain a speciation.
\square Remapping e to f would prevent the speciation $=>$ forbidden.

Models of segmental duplications

\square Episode clustering EC
\square Goal : find a valid map of the genes that does not break any speciation and minimizes \# of species that have at least one Dup in them.

Models of segmental duplications

\square Episode clustering EC
\square Goal : find a valid map of the genes that does not break any speciation and minimizes \# of species that have at least one Dup in them.

Models of segmental duplications

\square Episode clustering EC
\square Goal : find a valid map of the genes that does not break any speciation and minimizes \# of species that have at least one Dup in them.
\square Can be solved in polynomial time (also for other types of restrictions).

- [Burleigh \& al., RECOMB 2008]

Models of segmental duplications

\square Gene duplication clustering GD [FHS 1998]
\square Dup events can affect genes in the same species, but contain at most one gene per gene tree.
\square No restriction on mapping.

Models of segmental duplications

\square Gene duplication clustering GD
\square Dup events can affect genes in the same species, but contain at most one gene per gene tree.
\square No restriction on mapping.

Models of segmental duplications

\square Gene duplication clustering GD
\square Dup events can affect genes in the same species, but contain at most one gene per gene tree.
\square No restriction on mapping.

Models of segmental duplications

\square Gene duplication clustering GD
\square Dup events can affect genes in the same species, but contain at most one gene per gene tree.
\square No restriction on mapping.

Models of segmental duplications

\square Gene duplication clustering GD
\square Dup events can affect genes in the same species, but contain at most one gene per gene tree.
\square No restriction on mapping.
\square NP-hard, and even W[1]-hard in the \# of dups.

- [FHS, ISAAC 2008]

Models of segmental duplications

\square Minimum episode ME [Bansal \& Eulenstein 2008]
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.
\square No remapping restriction needed.

Models of segmental duplications

\square Minimum episode ME
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.
\square No remapping restriction needed.

Models of segmental duplications

\square Minimum episode ME
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.
\square No remapping restriction needed.

Models of segmental duplications

\square Minimum Episodes inference problem
$\square \| n$ nut : species tree S, gene trees G_{1}, \ldots, G_{n}
\square Find : a valid gene-species mapping m that minimizes the number of ME duplications.

Models of segmental duplications

\square Minimum Episodes inference problem
$\square \|$ nput : species tree S, gene trees G_{1}, \ldots, G_{n}
\square Find : a valid gene-species mapping m that minimizes the number of ME duplications.
\square With restriction of "never break a speciation", can be solved in polynomial time.

- [Bansal \& Eulenstein, Bioinformatics 2008]
\square [Paszek \& Gorecki, TCBB 2017]
\square Unrestricted mapping $=$ open problem until recently

Models of segmental duplications

\square Minimum Episode and Species Tree Inference
\square Input : gene trees G_{1}, \ldots, G_{n}
\square Find : a species tree \mathbf{S} and a valid gene-species mapping that minimizes the number of ME duplications.
\square Can be solved in polynomial time!

- [Van lersel, Janssen, Jones, Murakami \& Zeh, TCBB 2019]
\square Reduction to Beaded Tree problem.

3 models

Some more on Minimum Episode inference

\square Minimum Episodes inference problem
\square Input : species tree S, gene trees G_{1}, \ldots, G_{n}
\square Find : a valid gene-species mapping m that minimizes the number of ME duplications.
\square Minimum Episodes inference problem
\square Input : species tree S, gene trees G_{1}, \ldots, G_{n}
\square Find : a valid gene-species mapping m that minimizes the number of ME duplications.
\square Naive algorithm:
\square For each valid mapping m

- Compute the number of ME duplications under m
\square Return the best mapping found

Reconciling with segmental Dups

\square Question: given a fixed mapping m, how do we minimize the number of ME Dups?

Reconciling with segmental Dups

\square Question: given a fixed mapping m, how do we minimize the number of ME Dups?
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.

Reconciling with segmental Dups

\square Question: given a fixed mapping m, how do we minimize the number of ME Dups?
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.

Reconciling with segmental Dups

\square Question: given a fixed mapping m, how do we minimize the number of ME Dups?
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.

Reconciling with segmental Dups

\square Question: given a fixed mapping m, how do we minimize the number of ME Dups?
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.

Reconciling with segmental Dups

\square Question: given a fixed mapping m, how do we minimize the number of ME Dups?
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.

Reconciling with segmental Dups

\square Question: given a fixed mapping m, how do we minimize the number of ME Dups?
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.

Reconciling with segmental Dups

\square Question: given a fixed mapping m, how do we minimize the number of ME Dups?
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.

Reconciling with segmental Dups

\square Question: given a fixed mapping m, how do we minimize the number of ME Dups?
\square Dup events can affect genes in the same species, but cannot contain a gene and one of its descendants.
\square \# segmental Dups in $f=$ height of f forest

Reconciling with segmental Dups

\square \# segmental Dups in $f=$ height of \boldsymbol{f} forest $=3$
\square \# segmental Dups in $a=$ height of a forest $=1$
\square Total dup cost $=4$

Reconciling with segmental Dups

$\square \|$ nput : species tree S, gene trees G_{1}, \ldots, G_{n}
\square Find : a valid gene-species mapping m that minimizes the sum of dup heights $\sum_{v \in V(S)}$ dupheight (v).

Reconciling with segmental Dups

\square Main difficulty : remapping a Dup can create a chain of Dups above it.

NP-hardness of ME clustering

\square Complexity was left opened in Paszek \& Gorecki in 2017.
\square Theorem: Finding an optimal reconciliation with the minimum number of ME Dups is NP-hard.

- [Dondi, L \& Scornavacca, AMB 2019]
\square Reduction from Vertex Cover

NP-hardness of ME clustering

\square Theorem: finding an optimal reconciliation with minimum ME Dups is NP-hard, even if only one gene tree is given in the input.

NP-hardness of ME clustering

\square Theorem: finding an optimal reconciliation with minimum ME Dups is NP-hard, even if only one gene tree is given in the input.
\square Reduction from reconciliation with many gene trees: just join all the gene trees under many speciations.

Incorporating gene losses

Incorporating gene losses

\square Input : species tree S, gene trees G_{1}, \ldots, G_{n} dup cost δ, loss cost $\boldsymbol{\lambda}$
\square Find : a valid gene-species mapping m that minimizes δ^{*} (sum of Dup heights) $+\lambda^{*}$ (number of losses)

1 DUP, 5 LOSSES (before, we had 2 DUPS, 3 LOSSES)

The case of $\lambda \geq \delta$

$\square \lambda \geq \delta=>$ losses are worse than Dups.

The case of $\lambda \geq \delta$

$\square \lambda \geq \delta=>$ losses are worse than Dups.
\square Theorem: when $\lambda \geq \delta$, the usual LCA mapping yields an optimal reconciliation. It is also the unique optimal reconciliation if $\lambda>\delta$.

An FPT algorithm for $\lambda<\delta$

An $O\left((\delta / \lambda)^{d+1} n\right)$ time algorithm.
$\square d$ is the sum of Dup heights in an optimal solution
\square e.g. when $\delta=3, \lambda=2$, we get a $O\left(1.5^{d+1} n\right)$ algorithm.

An FPT algorithm for $\boldsymbol{\lambda}<\boldsymbol{\delta}$

\square When we remap a Dup node up by k species, we create at least k new losses.

An FPT algorithm for $\boldsymbol{\lambda}<\boldsymbol{\delta}$

\square When we remap a Dup node up by k species, we create at least k new losses.

An FPT algorithm for $\boldsymbol{\lambda}<\boldsymbol{\delta}$

\square When we remap a Dup node up by k species, we create at least k new losses.

An FPT algorithm for $\boldsymbol{\lambda}<\boldsymbol{\delta}$

\square When we remap a Dup node up by k species, we create at least k new losses.
\square If we remap a Dup node up by more than δ / λ species, we save 1 Dup but create $>\delta / \lambda$ losses.

An FPT algorithm for $\boldsymbol{\lambda}<\boldsymbol{\delta}$

\square When we remap a Dup node up by k species, we create at least k new losses.
\square If $\mathrm{k}>\delta / \lambda$ losses, never worth it.

An FPT algorithm for $\boldsymbol{\lambda}<\boldsymbol{\delta}$

\square Branching algorithm:
\square Take a Dup node x mapped to species s under the LCA mapping.
\square Branch into the δ / λ possible ways of remapping x to an ancestor s ' of s.

- If x is well-chosen, each time we branch, Dup heights increase by 1 .

An FPT algorithm for $\lambda<\delta$

\square Branching algorithm:
\square Take a Dup node x mapped to species s under the LCA mapping.
\square Branch into the δ / λ possible ways of remapping x to an ancestor s ' of s.

- If x is well-chosen, each time we branch, Dup heights increase by 1 .
\square Search tree of degree δ / λ and height at most d.
$\square O\left((\delta / \lambda)^{d+1} n\right)$ complexity

Experiments

\square We implemented the FPT algorithm.

- https:/ / github.com/manuellafond/Multrec
\square We applied it on 2 datasets:
\square Yeast species from [Butler \& al., Nature, 2009]
- 16 species, 2379 gene trees
\square Eukaryotes from [Guigo \& al., Mol Phylo Evo, 1996]
- 16 species, 53 gene trees

Experiments

\square In the 2379 yeast trees, we infer a segmental Dup with 216 genes ($\delta=3, \lambda=2$).
\square Located here

Experiments

\square In the 2379 yeast trees, we infer a segmental Dup with 216 genes ($\delta=3, \lambda=2$).
\square Located here
\square Coincides with WGD found using synteny in [Kellis, Birren \& Lander, Nature, 2004]

Nodes 7,6,13,2 had segmental Dup with 190, 157, 148 and 136 genes.

Experiments

\square In the 53 Eukaryote gene trees.

- ExactMGD [Bansal \& Eulenstein, Bioinf, 2008] finds a solution with 5 segmental Dups
- Does not allow speciations to become duplications.
\square We find a solution with 4 segmentall Dups
- By setting $\delta>61, \lambda=1$
- All segmental Dups found in [Guigo \& al., 1996] are confirmed, EXCEPT ONE.

Experiments

\square In the 53 Eukaryote gene trees.
In our solutions, no Dup maps

\square Algorithmic challenges
\square Without losses, is the problem FPT in d? And with losses?
\square Constant factor approximation?
\square Modeling challenges
\square Model the problem with segmental dups + segmental losses
\square Add segmental horizontal gene transfers
\square Add conserved adjacencies / syntenies into the optimization criteria

Incorporating syntenic blocks

Syntenic blocks: segments with preserved gene order across species

Syntenic blocks : segments with preserved gene order across species

Syntenic blocks : segments with preserved gene order across species

Syntenic blocks : segments with preserved gene order across species

Syntenic blocks : segments with preserved gene order across species
\square Synteny tree reconciliation problem
$\square \|$ Input : species tree S, a synteny tree T in which each leaf is labeled by a syntenic block
\square Find : an evolution of blocks across T with the minimum segmental dups + losses
\square Synteny tree reconciliation problem
$\square \|$ Input : species tree S, a synteny tree T in which each leaf is labeled by a syntenic block
\square Find : an evolution of blocks across T with the minimum segmental dups + losses
\square If all leaf blocks are identical, same as classical reconciliation.
\square Problem : syntenic blocks can vary in content because of losses.

\square Synteny tree reconciliation problem

- Input : species tree S , a synteny tree T in which each leaf is labeled by a syntenic block
■ Syntenic block = string of characters (representing colors)
\square Find : an evolution of blocks across T with the minimum segmental dups + losses
- Assign each internal node a string and a species
- Block speciation $=$ block transmitted to 2 descending species

■ Block dup = copy substring, paste it in a new block

- Partial block loss = remove a substring

■ Block loss = whole block is lost

\square Complexity of synteny tree reconciliation problem:
\square Unknown.
\square Belief : if root sequence is known, feasible.
\square Complexity of synteny tree reconciliation problem:
\square Unknown.
\square Belief : if root sequence is known, feasible.
\square Rearrangements are forbidden $=>$ the leaves give precedence constraints on the ordering of the string at the root.
\square Topological sort of leaf constraints $=$ possible strings at the root.
\square How to choose the best ordering?
\square Set version : each genome is a set of characters.
\square Dup can copy any subset, loss can remove any subset.
\square Can be solved in polynomial time.

- [Delabre, El-Mabrouk, Huber, L, Moulton, Noutahi, Sauti, AMB 2020]
\square Bottom-up dynamic programming.
\square The synteny reconciliation is just the tip of the iceberg.
\square Where does the synteny tree come from?
\square The synteny tree should reflect the evolution of all the genes in its blocks.
\square Each gene family has its own tree.
\square Each tree $=$ an 'opinion' on how the blocks evolved.
\square If each tree is identical, synteny tree is obvious.
\square If not, the 'opinions' should at least be compatilble.

Incompatible histories

How did the blocks A_{1}, A_{2}, B_{1} evolve?

Green family says: $A_{1} A_{2} \mid B_{1}$

Incompatible histories

How did the blocks A_{1}, A_{2}, B_{1} evolve?

Green family says: $A_{1} A_{2} \mid B_{1}$ Blue family says: $A_{1} A_{2} \mid B_{1}$

Incompatible histories

How did the blocks $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}$ evolve?

Green family says: $A_{1} A_{2} \mid B_{1}$ Blue family says: $A_{1} A_{2} \mid B_{1}$ Orange family says : $A_{1} A_{2} \mid B_{1}$

All trees agree => Good, synteny tree is obvious.

Incompatible histories

How did the blocks $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}$ evolve?

Green family says: $A_{1} A_{2} \mid B_{1}$ Blue family says: $A_{1} A_{2} \mid B_{1}$ Orange family says : $A_{1} A_{2} \mid B_{1}$

All trees agree => Good, synteny tree is obvious.

Incompatible histories

Green family says: $A_{1} A_{2} \mid B_{1}$ Blue family says: $A_{1} A_{2} \mid B_{1}$ Orange family says : $A_{2} B_{1} \mid A_{1}$

Discordant topologies $=>$ Blocks can't have evolved together.

Incompatible histories

\square If each synteny has exactly k genes, we have k trees with leafset $X=$ leaf labels $=$ blocks, all distinct
\square If the k trees are identical, easy to reconcile.
\square If not, find some minimall way to edit the trees so that they are identical + minimize reconciliation cost.
\square No clear formulation known.

Proof-of-concept : opioids family

(i)

OPR	NKAIN	STMN	SRC-B
OPRM1 $\left(a_{1}\right)$	NKAIN1 $\left(n_{1}\right)$	STMN1 $\left(s_{1}\right)$	HCK $\left(h_{1}\right)$
OPRD1 $\left(a_{2}\right)$	NKAIN2 $\left(n_{2}\right)$	STMN3 $\left(s_{2}\right)$	LCK $\left(h_{2}\right)$
OPRL1 $\left(a_{3}\right)$	NKAIN3 $\left(n_{3}\right)$		LYN $\left(h_{3}\right)$
OPRK1 $\left(a_{4}\right)$	NKAIN4 $\left(n_{4}\right)$		
NPBWR1 $(a 5)$			
NPBWR2 $(a 6)$			

(ii) D. melanogaster

$$
\begin{aligned}
& \mathrm{D}:\left(\begin{array}{c}
(\mathrm{n}) \\
\mathrm{D}_{1} \\
\mathrm{Cl} \\
\mathrm{D}_{2}
\end{array}\right. \\
& \underset{L_{1}}{\left(n_{2}\right)} \underset{L_{2}}{\left(a_{1}\right)}\left(n_{3} h_{3} a_{4}\right)\left(h_{2} s_{1} a_{4} a_{2} n_{1}\right)\left(s_{2} n_{2} a_{4} a_{5}^{a} a_{3} h_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M:\left(a_{4} a_{5}\right)\left(h_{1} n_{4} s_{2} a_{3}\right)\left(h_{3} n_{3} h_{2} n_{1} a_{2} s_{1}\right)\left(a_{1} n_{2}\right) \\
& \mathbf{M}_{1} \quad \mathbf{M}_{2} \quad \mathbf{M}_{3} \quad \mathbf{M}_{4} \\
& H:\left(s_{1} a_{2} n_{1} h_{2}\right)\left(n_{2} a_{1}\right)\left(a_{5} a_{4} h_{3} n_{3}\right)\left(h_{1} n_{4} s_{2} a_{3} a_{3}\right)
\end{aligned}
$$

Conclusion

\square Modeling challenges
\square Combine both ME and synteny views
\square Infer ME dups + losses using synteny information

- Integrate segmental losses + transfers + ...
\square Integrate order-changing rearrangements
\square Also, simulate good multi-family evolutionary scenarios

Conclusion

\square Algorithmic challenges
\square Scalable algorithm for ME + losses inference
\square Synteny tree reconciliation and variants
\square Construct a synteny tree that agrees the most with the gene trees in the blocks

Thank you

