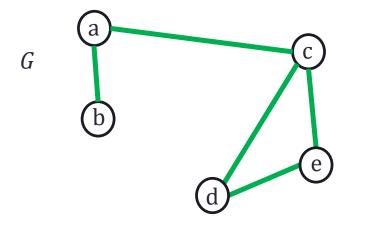
RECOGNIZING K-LEAF POWERS IN POLYNOMIAL TIME, FOR CONSTANT K

Manuel Lafond, Université de Sherbrooke, Canada

A graph *G* is a *k*-leaf power if there exists a (rooted) tree *T* such that:

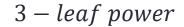
- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

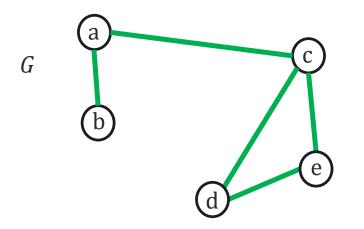
$$3 - leaf power?$$

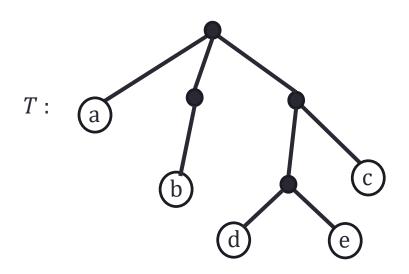


A graph *G* is a *k*-leaf power if there exists a (rooted) tree *T* such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$



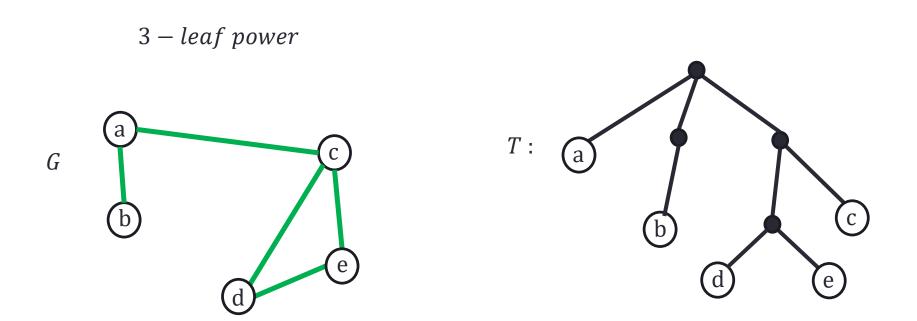




A graph *G* is a *k*-leaf power if there exists a (rooted) tree *T* such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

Equivalently, *G* is a *k*-leaf power if it can be obtained by taking the *k*-th power of a tree, and taking the subgraph induced by the leaves of the tree.



A graph *G* is a *k*-leaf power if there exists a (rooted) tree *T* such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u,v) \leq k$

Open problems [Nishimura, Ragde, Thilikos, 2002]

- Can k-leaf powers be characterized by chordal + finite set of forbidden induced subgraphs?
- Complexity of recognizing *k*-leaf powers if *k* is in the input?
- Complexity of recognizing *k*-leaf powers if *k* is fixed?

A graph *G* is a *k*-leaf power if there exists a (rooted) tree *T* such that:

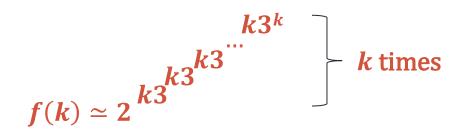
- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u,v) \leq k$

Open problems [Nishimura, Ragde, Thilikos, 2002]

- Can k-leaf powers be characterized by chordal + finite set of forbidden induced subgraphs?
 - YES for k = 2, 3, 4. OPEN for $k \ge 5$.
- Complexity of recognizing *k*-leaf powers if *k* is in the input?
 - OPEN. Not known to be NP-hard or in P.
- Complexity of recognizing *k*-leaf powers if *k* is fixed?
 - OPEN for 20 years. In P (this talk).

There is an algorithm that, given a graph *G*, decides whether *G* is a *k*-leaf power in time $O(n^{f(k)})$, where n = |V(G)| and *f* is a function that depends only on *k*.

There is an algorithm that, given a graph *G*, decides whether *G* is a *k*-leaf power in time $O(n^{f(k)})$, where n = |V(G)| and *f* is a function that depends only on *k*.



Known results

- **2-leaf powers** = P3-free graphs
- 3-leaf powers = chordal + (bull, gem, dart)-free graphs
 [Rautenbach, Disc Maths 2006]

[folklore]

- 4-leaf powers = chordal + X-free, where X is a finite set of forbidden subgraphs [Brandstädt et al., TALG 2008]
- **5-leaf powers** recognition in P [Chang & Ko, WG 2007]
- **6-leaf powers** recognition in P [Ducoffe, WG 2019]
- Recognizing *k*-leaf powers is FPT in k + degeneracy(G), and
 FPT in k + treewidth(G). [Eppstein & Havvaei, IPEC 2018]

Known results

- Leaf power = graphs that are *k*-leaf powers for some *k*.
- All leaf powers are **chordal**, and also **strongly chordal**
- Converse **not true** [L, WG2017; Jaffke & al., TCS2019]
- Subclasses of strongly chordal (interval, rooted directed, ptolemaic) graphs are easy to recognize
 [Brandstädt et al., LATIN2008 & DiscMath2010]
- Leaf powers have **mim-width 1** [Jaffke & al., TCS2019]
- Leaf powers with **star NeS models** in P [Bergougnoux, 2021]

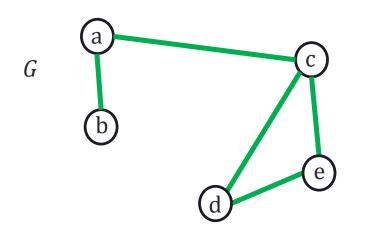
Other tree-definable classes

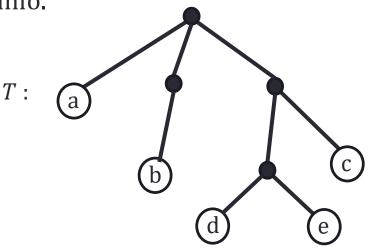
- Many other tree-to-graph representations, all with similar open problems
 - Pairwise compatiblity graphs (PCG)
 - *uv* edge iff distance in interval [*l*, *h*]
 - k-interval PCGs, OR-PCGs and AND-PCGs
 - Allow k-intervals, union/intersection of PCGs
 - Orthology graphs
 - *uv* edge iff lca has label 1
 - Fitch graphs
 - uv edge iff some edge on u v path has label 1
 - Best match graphs

^{• .}

Applications

- In computational biology:
- V(G) are species. Sequence data tells us that
 - **edge = 'close'** species in evolution
 - **non-edge = 'far'** species in evolution, and
 - **k** = threshold between close and far.
 - Goal = reconstruct a tree from that info.

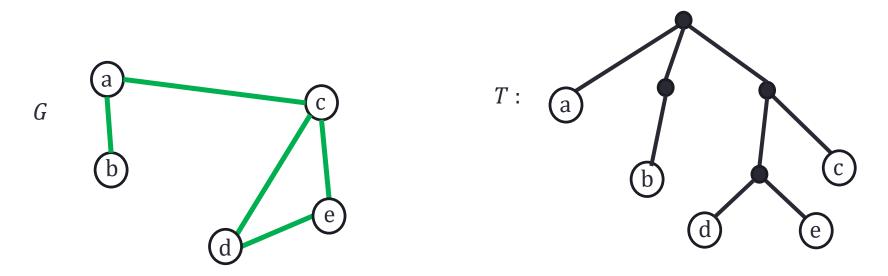




Applications

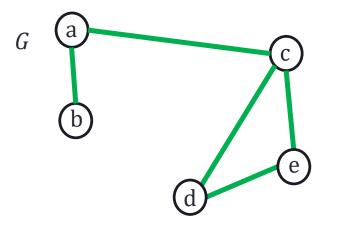
In algorithms:

- Many problems are in P, or FPT in k for k-leaf powers.
 (dynamic programming on the tree)
- Not that interesting, but also true for other tree-to-graph representations (PCGs, etc.).

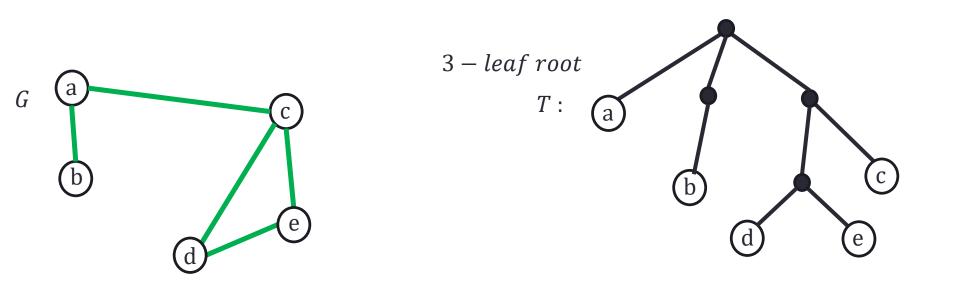


There is an algorithm that, given a graph *G*, decides whether *G* is a *k*-leaf power in time $O(n^{f(k)})$, where n = |V(G)| and *f* is a function that depends only on *k*.

• Given a graph *G*, we must decide whether *G* is a *k*-leaf power (assume that *k* is fixed).

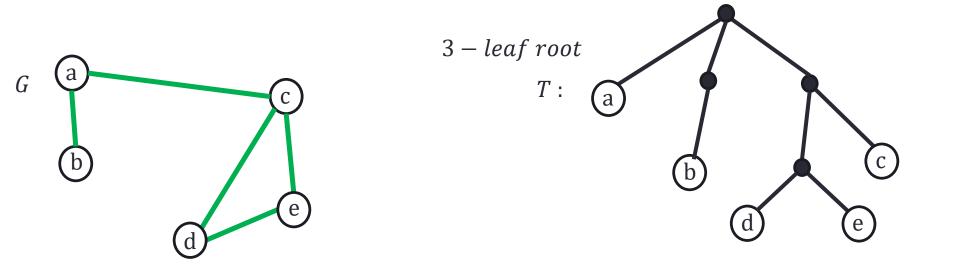


For *G* a *k*-leaf power, a *k*-leaf root of *G* is a tree with L(T) = V(G) satisfying $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$.



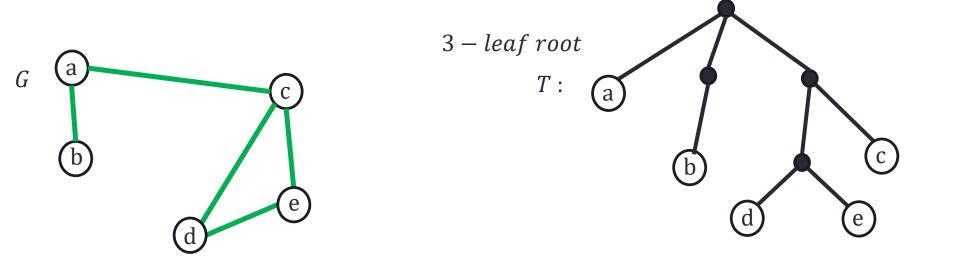
For *G* a *k*-leaf power, a *k*-leaf root of *G* is a tree with L(T) = V(G) satisfying $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$.

Theorem (from Eppstein & Havvaei, 2019) There is a function g such that one can decide in time O(g(tw(G), k)n)whether G is a k-leaf power, where tw(G) is the treewidth of G.



For *G* a *k*-leaf power, a *k*-leaf root of *G* is a tree with L(T) = V(G) satisfying $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$.

Theorem



- Proof idea.
- If G admits a k-leaf root of max degree d, then G has maximum degree d^k.

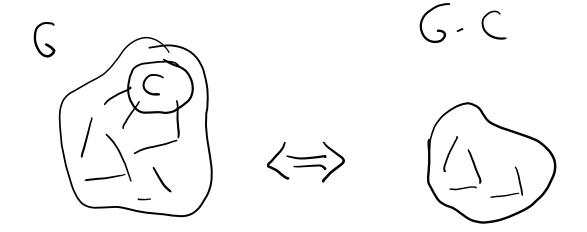
- Proof idea.
- If G admits a k-leaf root of max degree d, then G has maximum degree d^k.
- All *k*-leaf powers are chordal.
- In chordal graphs, we have $tw(G) = w(G) 1 \leq dk$.
 - tw(G) = treewidth, w(G) = clique number
- Use Eppstein & Havvaei to decide in time
 O(g(tw(G), k)n) = O(g(d^k, k)n) whether G is a k-leaf power.

- If *d* is a function of *k*, problem solved.
- **Bottom-line** : the difficulty resides in *k*-leaf roots of high maximum degree.

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

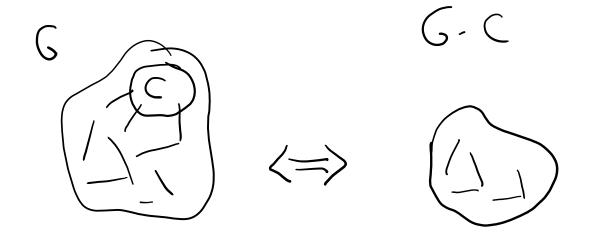


Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

This says that if *G* has high-degree *k*-leaf roots, then *G* has a redundant subset of vertices *C* that can be found and pruned 'quickly'.



Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power. Moreover, C can be found in time $O(n^{f(k)})$ if it exists.

The algorithm:

- 1) Check if *G* admits a *k*-leaf root of degree at most d = f(k) using Eppstein & Havvaei. If yes, return "yes".
- 2) Otherwise, check if *G* contains *C* as described above. If not, return "no".
- 3) Otherwise, repeat on G C.

Finishes in polynomial time, since k is fixed and this is repeated at most n times.

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power. Moreover, C can be found in time $O(n^{f(k)})$ if it exists.

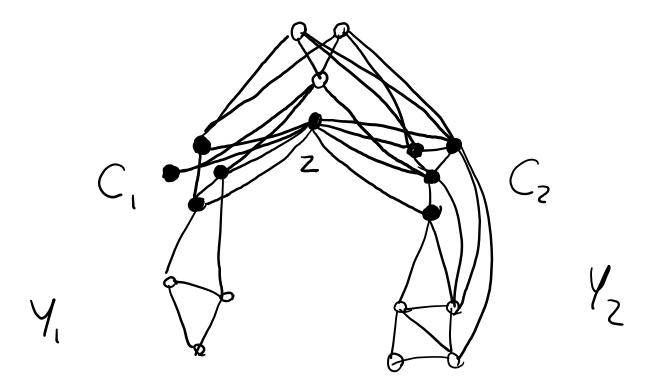
Step 1 : find lots of subsets $C_i \cup Y_i$ such that the C_i 's are cutsets, and all have the same neighborhood structure.

Step 2 : argue that enough of those $C_i \cup Y_i$ admit the "same" *k*-leaf roots.

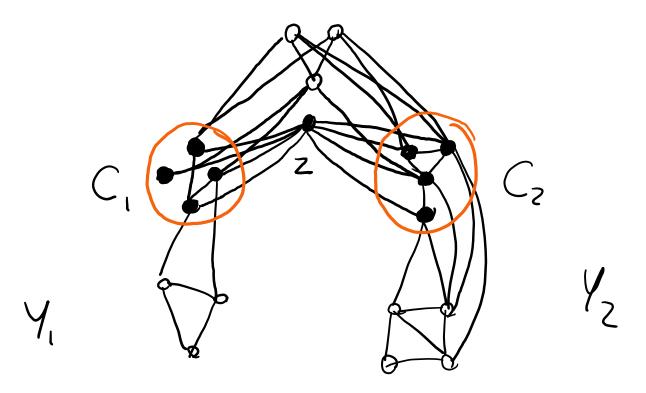
Step 3 : argue that any such $C_i \cup Y_i$ can be removed since we can find a *k*-leaf root of $G - C_i \cup Y_i$ and embed $C_i \cup Y_i$ into it afterwards.

Step 1 : subsets of vertices with the same neighborhood structure

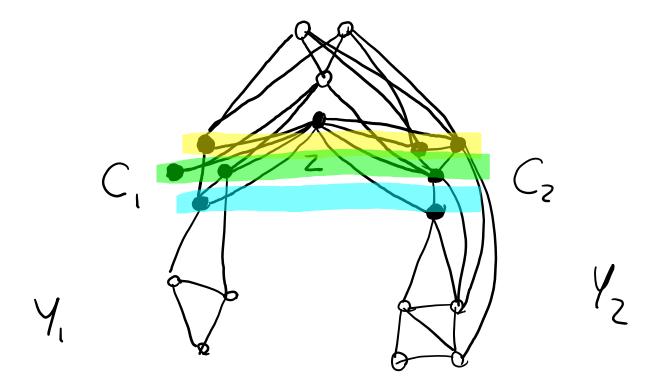
- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - There is z such that $C_1 \cup C_2 \subseteq N(z)$.
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - $C_1 \cup C_2$ can be partitioned into layers $L_1, ..., Lk$ such that vertices in the same layer have the same neighbors in $G (C_1 \cup Y_1 \cup C_2 \cup Y_2)$.



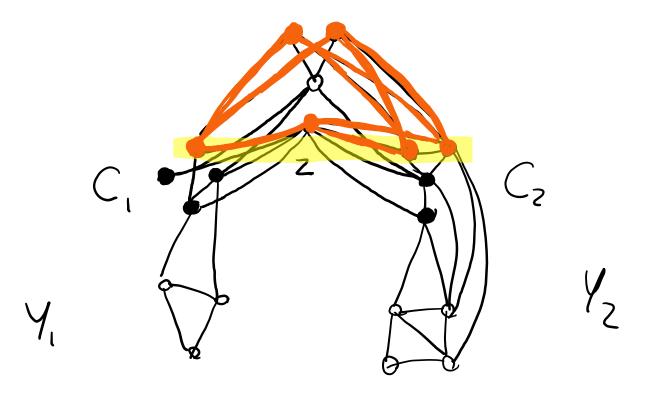
- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - There is z such that $C_1 \cup C_2 \subseteq N(z)$.
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - $C_1 \cup C_2$ can be partitioned into layers $L_1, ..., Lk$ such that vertices in the same layer have the same neighbors in $G (C_1 \cup Y_1 \cup C_2 \cup Y_2)$.



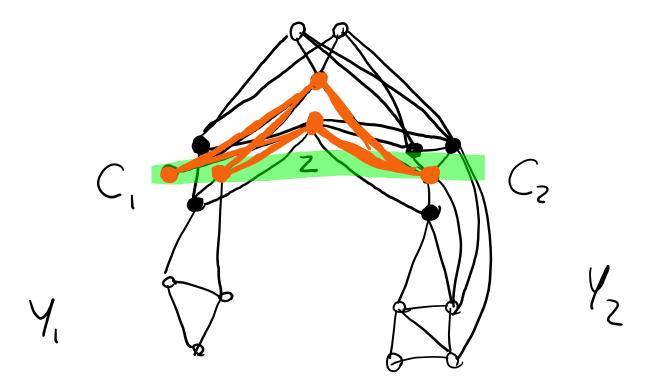
- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - There is z such that $C_1 \cup C_2 \subseteq N(z)$.
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - C₁ ∪ C₂ can be partitioned into layers L₁, ..., Lk such that vertices in the same layer have the same neighbors in G (C₁ ∪ Y₁ ∪ C₂ ∪ Y₂).



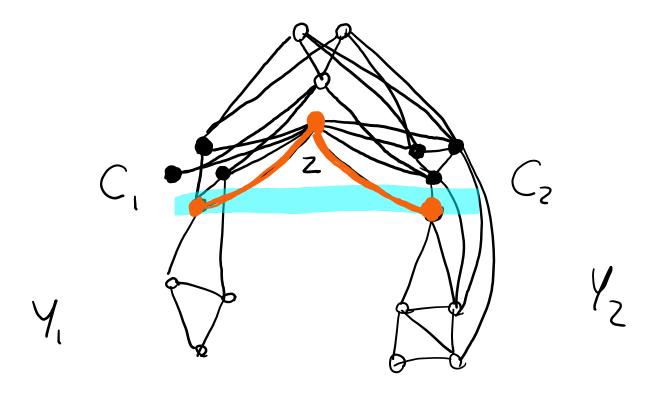
- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - There is z such that $C_1 \cup C_2 \subseteq N(z)$.
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - $C_1 \cup C_2$ can be partitioned into layers $L_1, ..., Lk$ such that vertices in the same layer have the same neighbors in $G (C_1 \cup Y_1 \cup C_2 \cup Y_2)$.



- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - There is z such that $C_1 \cup C_2 \subseteq N(z)$.
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - $C_1 \cup C_2$ can be partitioned into layers $L_1, ..., Lk$ such that vertices in the same layer have the same neighbors in $G (C_1 \cup Y_1 \cup C_2 \cup Y_2)$.



- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - There is z such that $C_1 \cup C_2 \subseteq N(z)$.
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - $C_1 \cup C_2$ can be partitioned into layers $L_1, ..., Lk$ such that vertices in the same layer have the same neighbors in $G (C_1 \cup Y_1 \cup C_2 \cup Y_2)$.



A similar structure of a graph G is a tuple S = (C, Y, z, L) where:

- $C = \{C_1, \ldots, C_d\}$ is a collection of $d \ge 2$ pairwise disjoint, non-empty subsets of vertices of G;
- *Y* = {*Y*₁,..., *Y_d*} is a collection of pairwise disjoint subsets of vertices of *G*, some of which are possibly empty. Also, *C_i* ∩ *Y_j* = ∅ for any *i*, *j* ∈ [*d*];
- $z \in V(G)$ and does not belong to any subset of C or \mathcal{Y} ;
- $\mathcal{L} = \{\ell_1, \ldots, \ell_d\}$ is a set of functions where, for each $i \in [d]$, we have $\ell_i : C_i \cup \{z\} \to \{0, 1, \ldots, k\}$. The functions in \mathcal{L} are called *layering functions*.

Additionally, S must satisfy several conditions. Let us denote $C^* = \bigcup_{i \in [d]} C_i$. Let $X = \{X_1, \ldots, X_t\}$ be the connected components of $G - C^*$. For each $i \in [d]$, denote $X^{(i)} = \{X_j \in X : N_G(X_j) \subseteq C_i\}$, i.e. the components that have neighbors only in C_i .

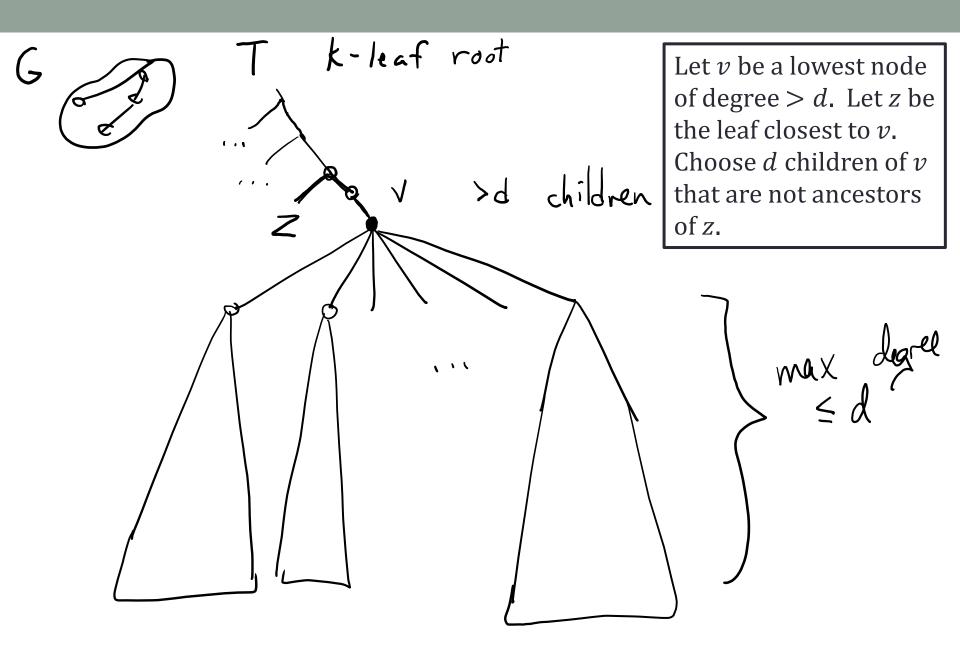
Then all the following conditions must hold:

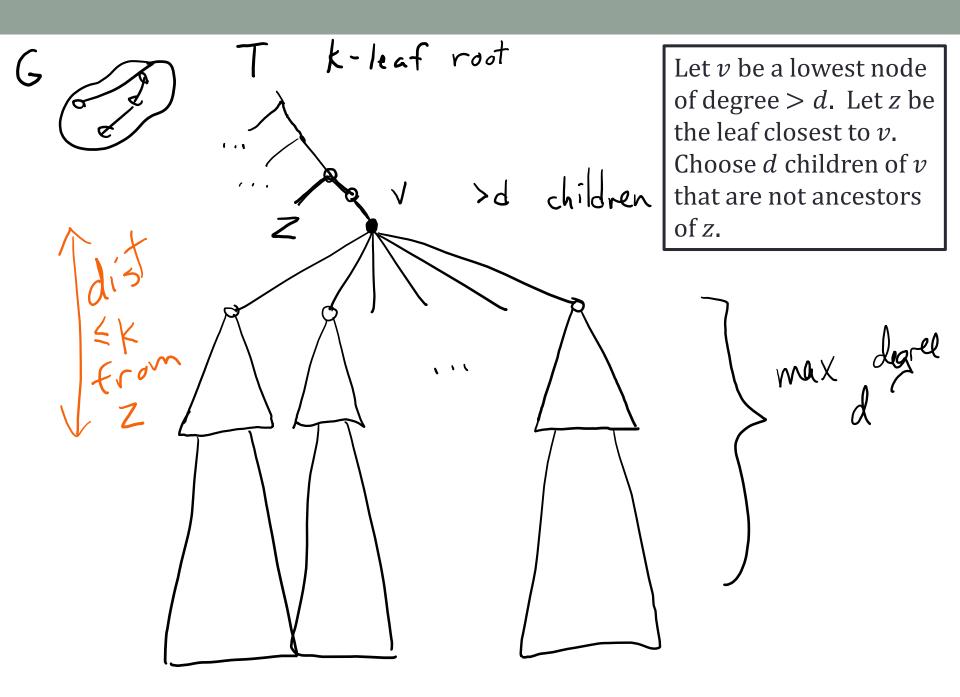
- 1. for each $i \in [d]$, $Y_i = \bigcup_{X_i \in X^{(i)}} X_j$ $(Y_i = \emptyset$ is possible);
- 2. there is exactly one connected component $X_z \in X$ such that for all $i \in [d]$, $N_G(X_z) \cap C_i \neq \emptyset$. Moreover, $z \in X_z$ and $C^* \subseteq N_G(z)$;
- 3. for all $X_j \in X \setminus \{X_z\}, X_j \subseteq Y_i$ for some $i \in [d]$. In particular, X_z is the only connected component of $G C^*$ with neighbors in two or more C_i 's;
- 4. the layering functions \mathcal{L} satisfy the following:
 - (a) for each $i \in [d]$, $\ell_i(z) = 0$. Moreover, $\ell_i(x) > 0$ for any $x \in C_i$;
 - (b) for any $i, j \in [d]$ and any $x \in C_i, y \in C_j, \ \ell_i(x) = \ell_j(y)$ implies $N_G(x) \setminus (C_i \cup Y_i \cup C_j \cup Y_j) = N_G(y) \setminus (C_i \cup Y_i \cup C_j \cup Y_j)$. Note that this includes the case i = j;
 - (c) for any $i, j \in [d]$ and any $x \in C_i, y \in C_j, \ell_i(x) + \ell_j(y) \le k$ implies $xy \in E(G)$. Note that this includes the case i = j.
 - (d) for any two distinct $i, j \in [d]$ and any $x \in C_i, y \in C_j, \ell_i(x) + \ell_j(y) > k$ implies $xy \notin E(G)$. Note that this does not include the case i = j

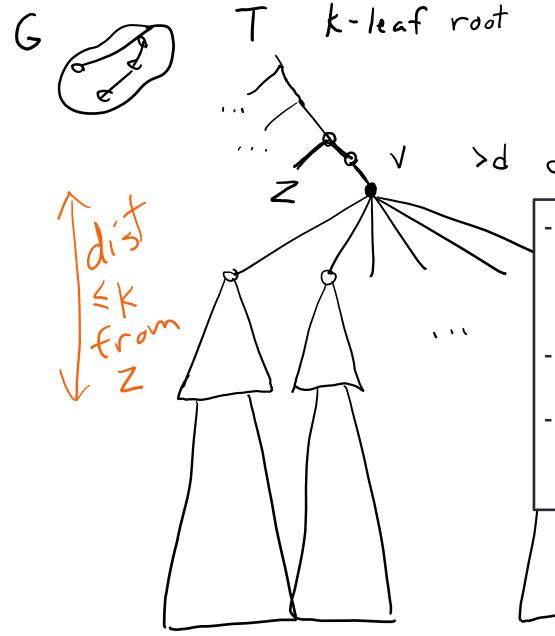
- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - There is z such that $C_1 \cup C_2 \subseteq N(z)$.
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - C₁ ∪ C₂ can be partitioned into layers L₁, ..., Lk such that vertices in the same layer have the same neighbors in G (C₁ ∪ Y₁ ∪ C₂ ∪ Y₂).

Lemma

If *G* has a *k*-leaf root of maximum degree > *d*, then there exist disjoint $C_1 \cup Y_1, ..., Cd \cup Yd$ pairwise-similar subsets that use the same *z*. Also, each C_i has size $\leq dk$.

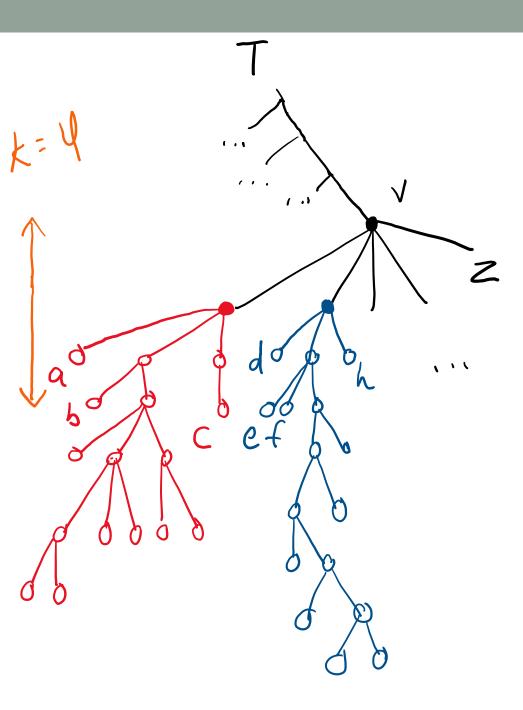




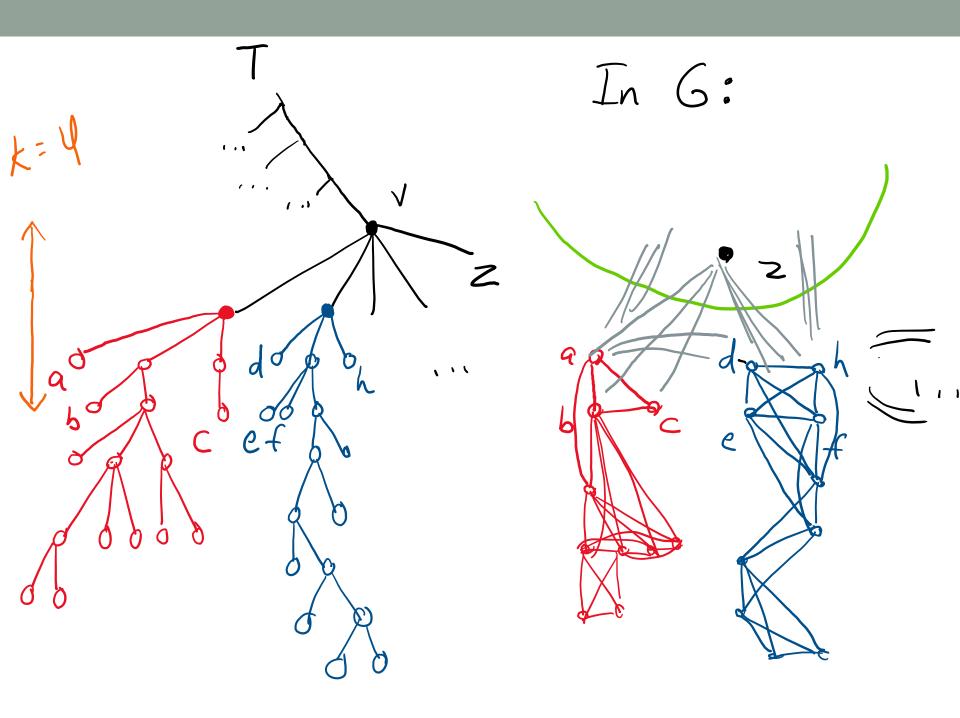


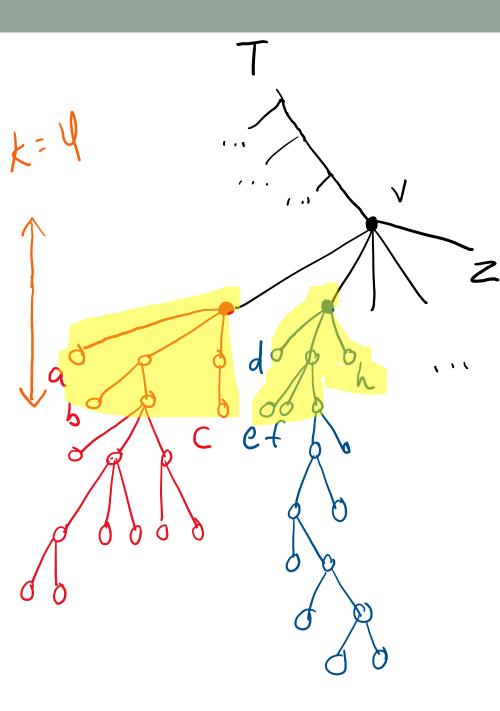
children

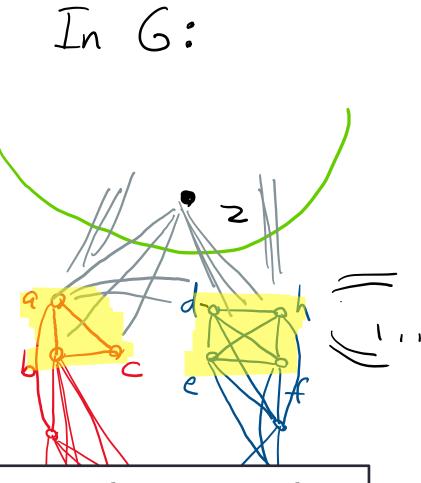
- Leaves at distance at most *k* from *z* below *v* are in *z*'s neighborhood and form cutsets in *G*.
- Each cutset has size at most
 d^k (by the choice of *v*).
- These cutsets are organized into layers determined by their distance to *v*.



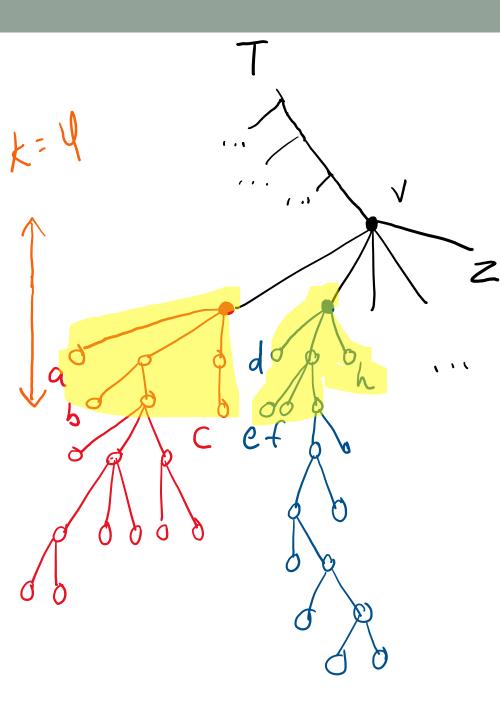
- Leaves at distance at most k
 from z below v are in z's
 neighborhood and form
 cutsets in G.
- Each cutset has size at most
 d^k (by the choice of *v*).
- These cutsets are organized into layers determined by their distance to *v*.

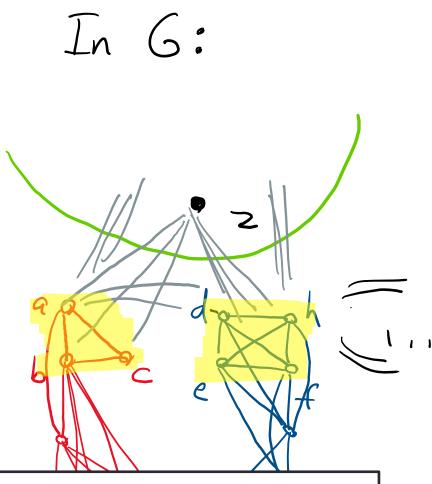




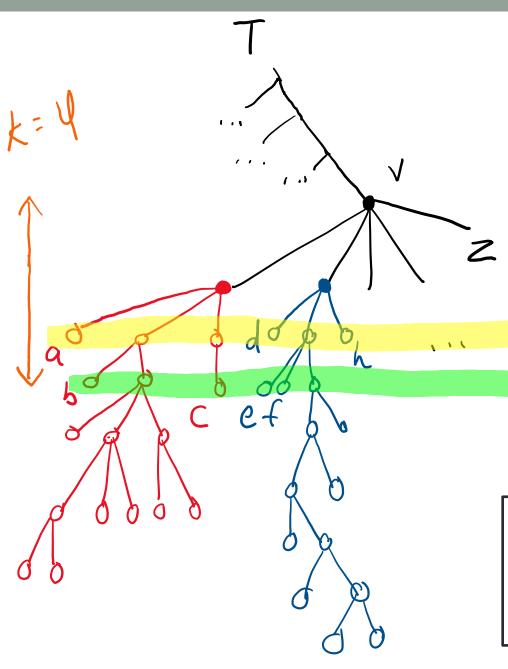


Leaves are distance at most k from *z* form cutsets in *G*.





Each cutset has size at most d^k because they are in a subtree of degree at most d.



Layers = distance from v in T. Two vertices in the same layer have the same neighbors outside of the red and blue subtrees.

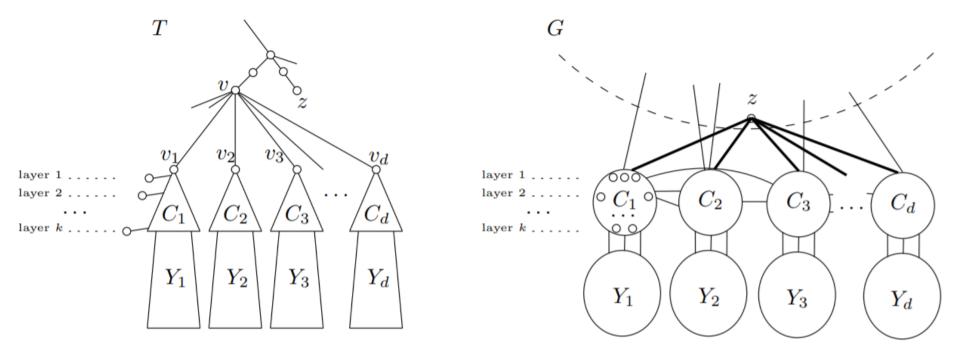
0

2

In G:

Lemma

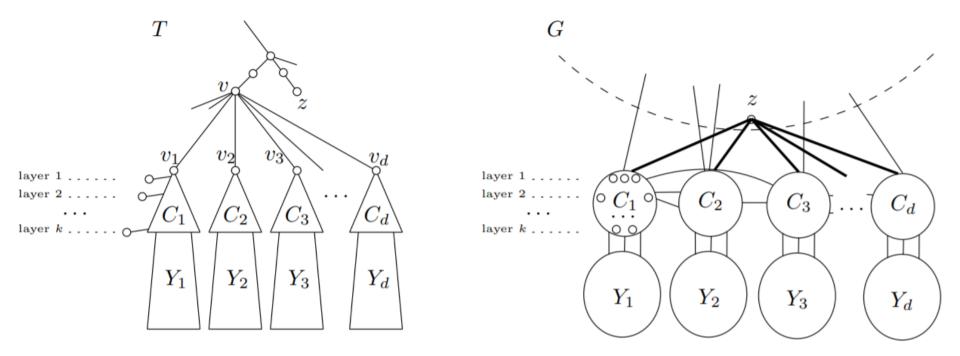
If *G* has a *k*-leaf root of maximum degree > *d*, then there exist disjoint $C_1 \cup Y_1, ..., Cd \cup Yd$ pairwise-similar subsets that use the same *z*. Also, each C_i has size $\leq dk$.



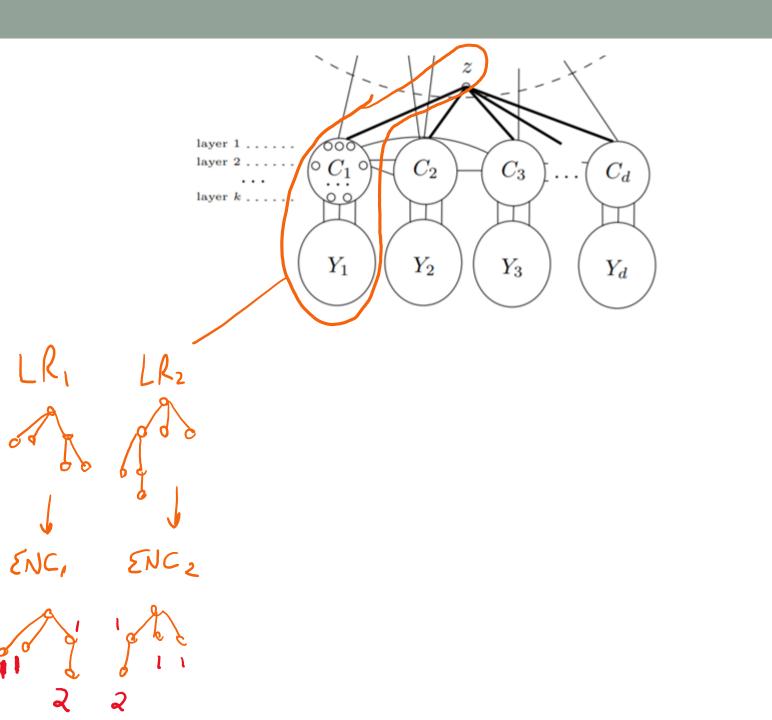
Lemma

If *G* has a *k*-leaf root of maximum degree > *d*, then there exist disjoint $C_1 \cup Y_1, ..., Cd \cup Yd$ pairwise-similar subsets that use the same *z*. Also, each C_i has size $\leq dk$.

- So we can find many subsets with the same neighborhood structure.
- Next : find those that have the "same" *k*-leaf roots.

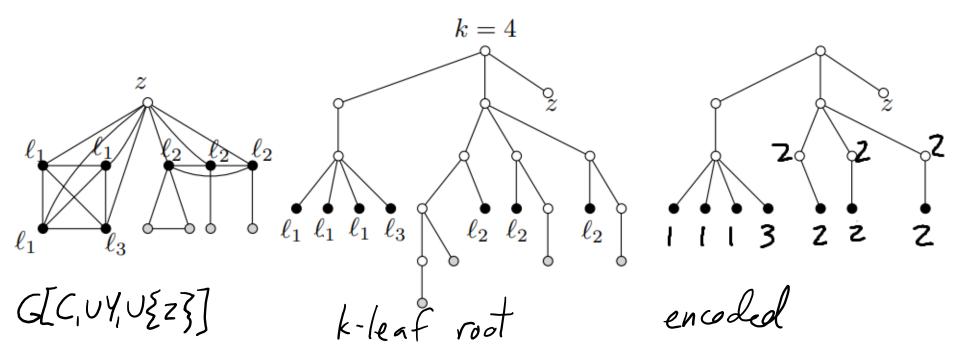


Step 2 : similar sets that have the same <u>encoded</u> *k*-leaf roots



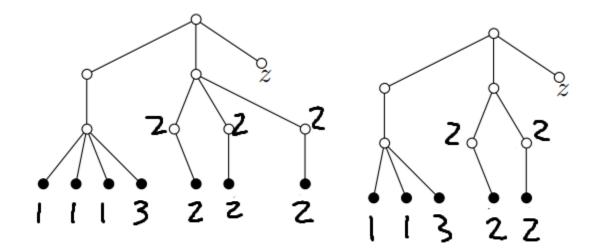
Similar sets with the same leaf roots

- Let $C_1 \cup Y_1$ be a set of vertices organized into layers L_1, \dots, Lk .
- Let *T*₁ be a *k*-leaf root of G[*C*₁ ∪ *Y*₁ ∪ {*z*}]. The layer-encoding of *T*₁ is obtained by
 - restricting T_1 to C_1 and z, and their ancestors
 - replacing each leaf of C_1 by its layer number.
 - labeling internal nodes by the distance to its closest Y_1 leaf
 - also...



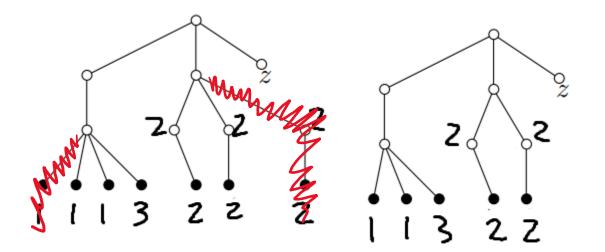
Similar sets with the same leaf roots

• also...for each node *u* that has at least 3 identical child subtrees, we remove one of these subtrees (they are redundant for our purposes).

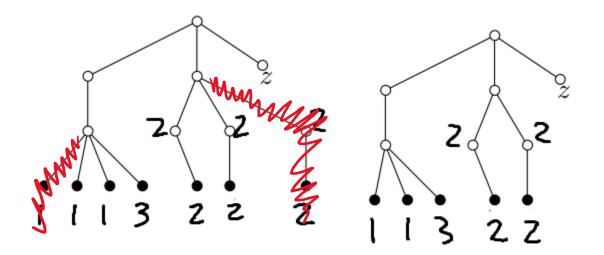


Similar sets with the same leaf roots

• also...for each node *u* that has at least 3 identical child subtrees, we remove one of these subtrees (they are redundant for our purposes).



Lemma The number of possible layer-encoded k-leaf roots is at most s(k), a function that depends only on k.



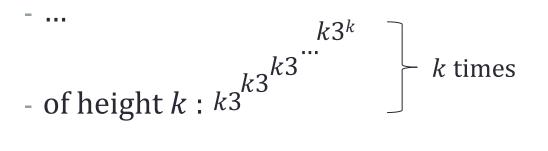
Lemma

The number of possible layer-encoded k-leaf roots is at most s(k), a function that depends only on k.

Proof idea.

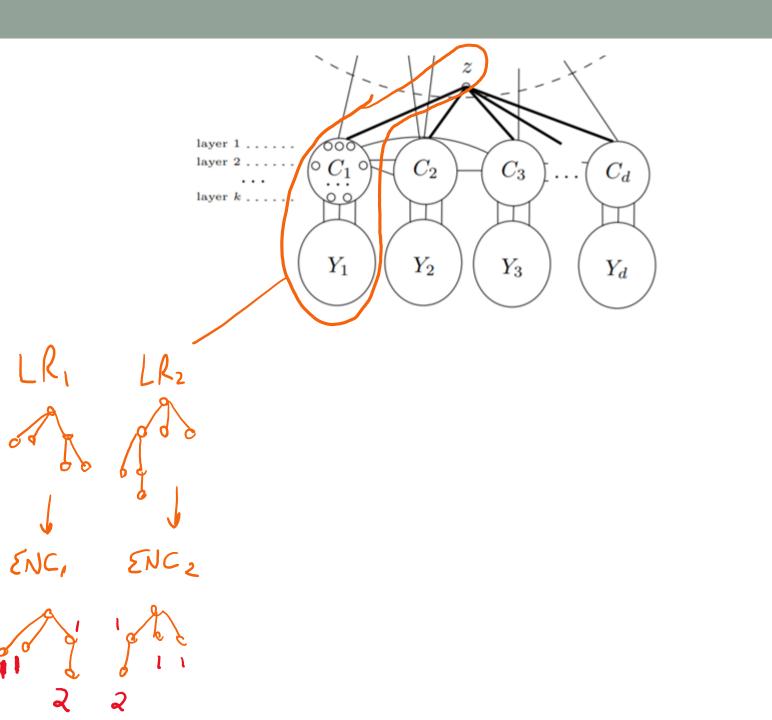
Layer-encoded k-leaf roots have height at most k. Possible layer-encoded k-leaf roots:

- of height 1:k (number of layer numbers)
- of height 2 : k3^k (k values for internal node, 0, 1 or 2 children of each type of height 1)
- of height 3 : $k3^{k3^k}$

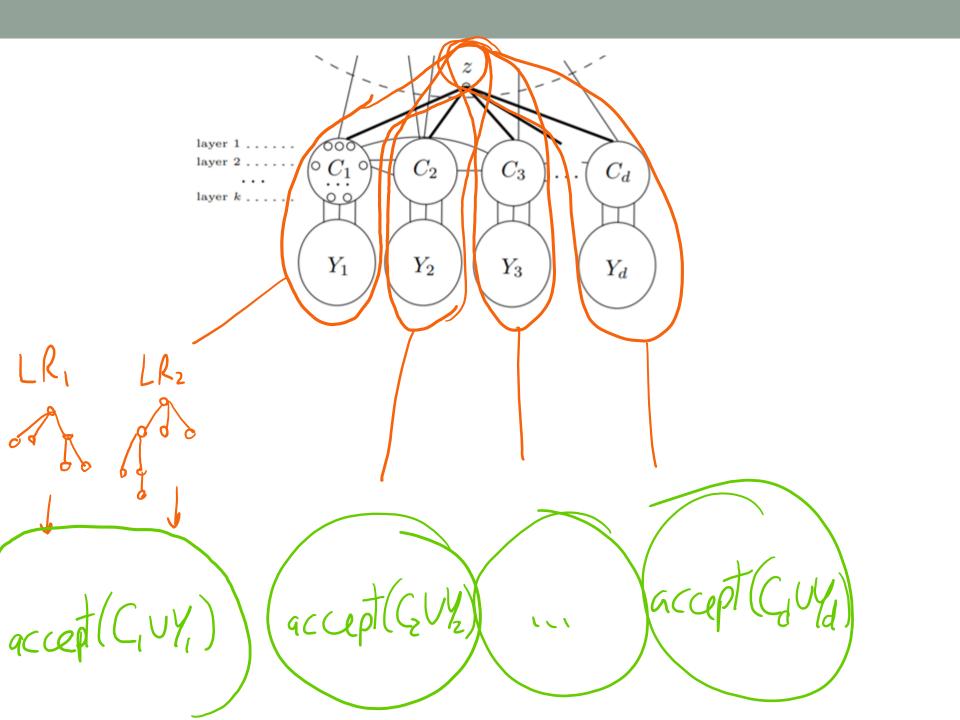


- For $C_i \cup Yi$, let $accept(C_i \cup Yi)$ be the set of layer-encoded *k*-leaf roots of $G[C_i \cup Yi \cup \{z\}]$.
- We say that similar subsets C₁ ∪ Y₁, ..., C_d ∪ Yd are homogeneous if all accept sets are equal, i.e.

 $accept(C_1 \cup Y_1) = \dots = accept(Cd \cup Yd).$



zlayer 1 1000 $C_1 \circ$ layer 2 C_2 C_d C_3 0 layer k . . Y_1 Y_2 Y_3 Y_d LR, LRZ this is $accept(C, UY_{i})$ ENC, ENC2 ۍ م 2



- For C_i ∪ Yi, let accept(Ci ∪ Yi) be the set of layer-encoded k-leaf roots of G[Ci ∪ Yi ∪ {z}].
- We say that similar subsets C₁ ∪ Y₁, ..., C_d ∪ Yd are homogeneous if all accept sets are equal, i.e.

 $accept(C_1 \cup Y_1) = \dots = accept(Cd \cup Yd).$

Lemma

If G has a k-leaf root of maximum degree $d > 3s(k) 2^{s(k)}$, then G contains 3s(k) similar and **homogeneous** subsets $C_1 \cup Y_1, \ldots, C_{3s(k)} \cup Y_{3s(k)}$. They all use the same z and $|Ci| \le dk$ for each *i*.

- For C_i ∪ Yi, let accept(Ci ∪ Yi) be the set of layer-encoded k-leaf roots of G[Ci ∪ Yi ∪ {z}].
- We say that similar subsets C₁ ∪ Y₁, ..., C_d ∪ Yd are homogeneous if all accept sets are equal, i.e.

 $accept(C_1 \cup Y_1) = \dots = accept(Cd \cup Yd).$

Lemma

If G has a k-leaf root of maximum degree $d > 3s(k) 2^{s(k)}$, then G contains 3s(k) similar and **homogeneous** subsets $C_1 \cup Y_1, \ldots, C_{3s(k)} \cup Y_{3s(k)}$. They all use the same z and $|Ci| \le dk$ for each *i*.

Pigeonhole argument. There are $2^{s(k)}$ possible accept sets. If $d > 3s(k) 2^{s(k)}$, we find d similar subsets and at least 3s(k) of them have the same accept set.

Step 3 : pruning one homogeneous subset and embedding its k-leaf root • Recall the thing that I'm trying to do.

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

• Recall the thing that I'm trying to do.

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

Moreover, C can be found in time $O(n^{f(k)})$ if it exists.

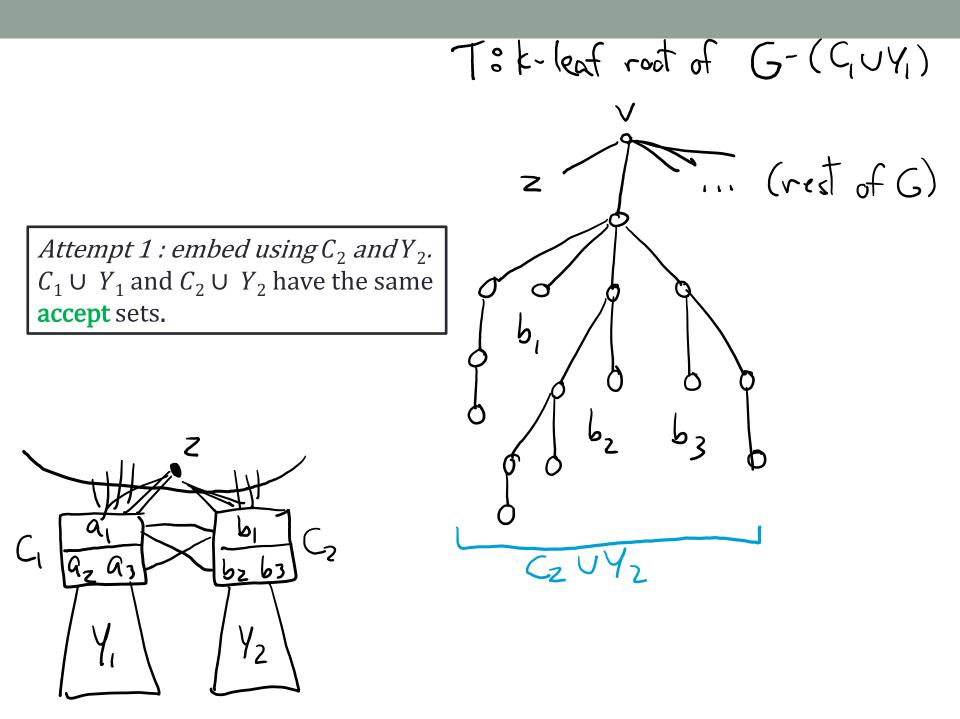
Let $C_1 \cup Y_1$, ..., $C_{3s(k)} \cup Y_{3s(k)}$ be a large enough number of similar + homogeneous sets.

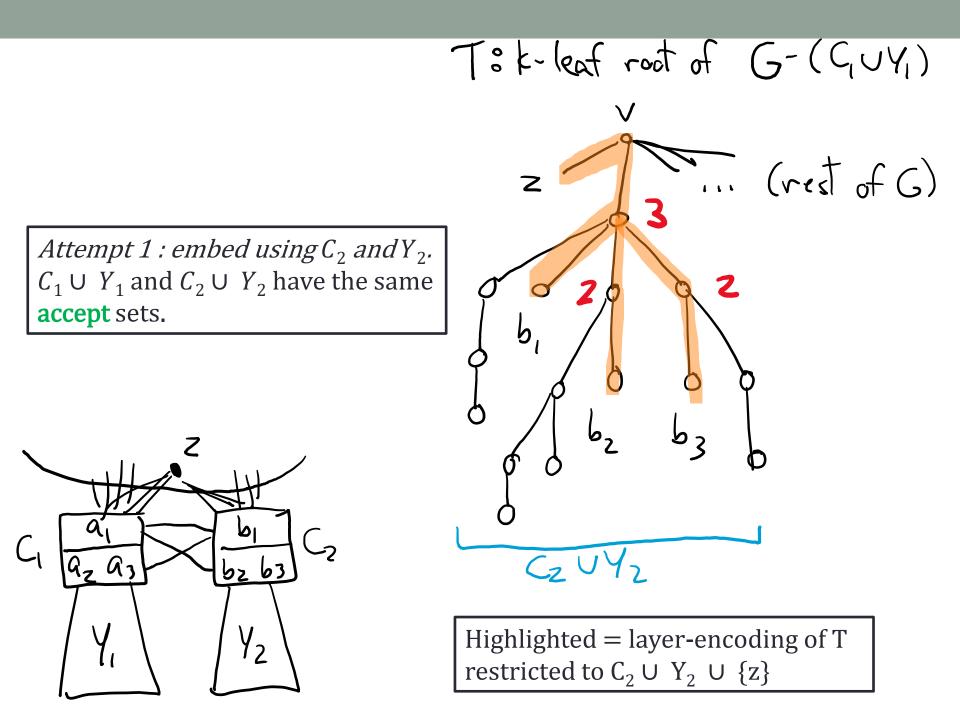
Consider $G - (C_1 \cup Y_1)$.

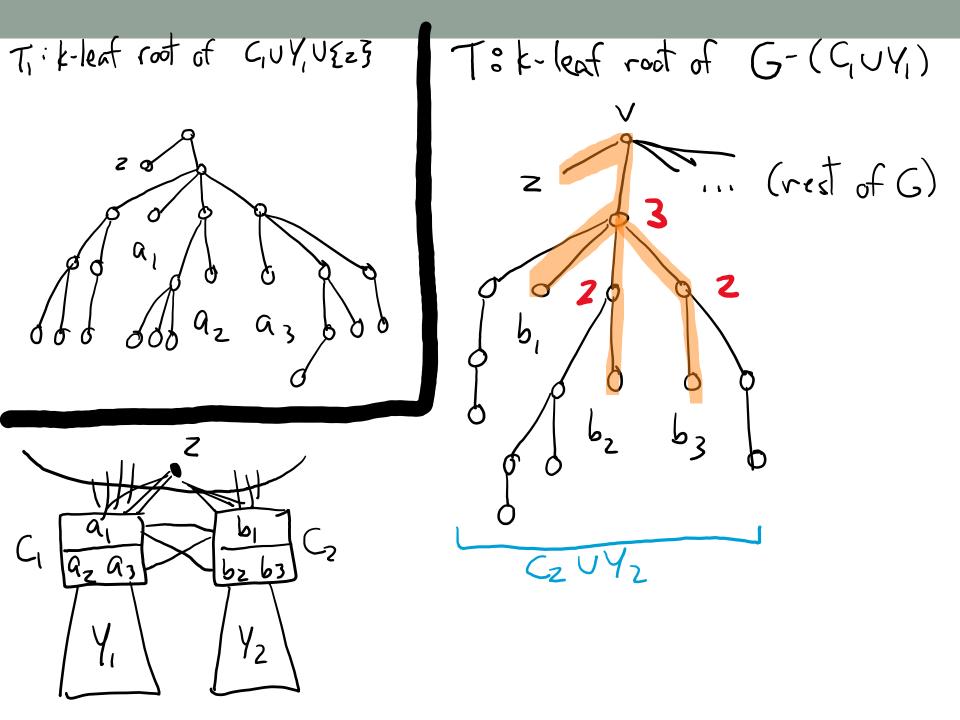
- ⇒ If *G* is a *k*-leaf power, then $G (C_1 \cup Y_1)$ is a *k*-leaf power.
- ⇐ Assume that $G (C_1 \cup Y_1)$ is a *k*-leaf power.

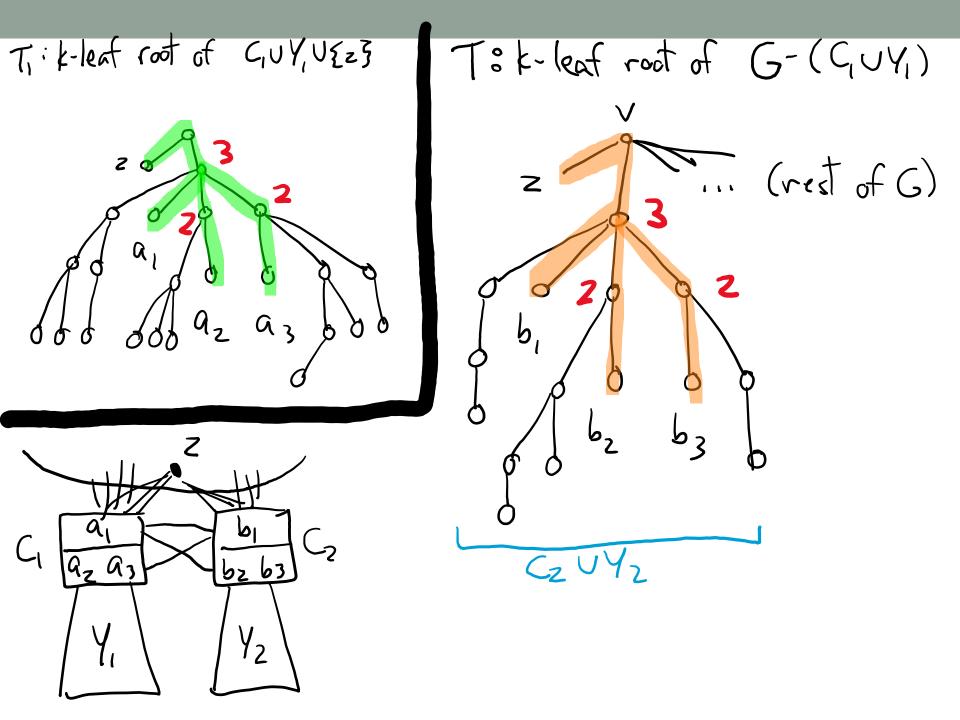
GOAL : argue that *G* is a *k*-leaf power.

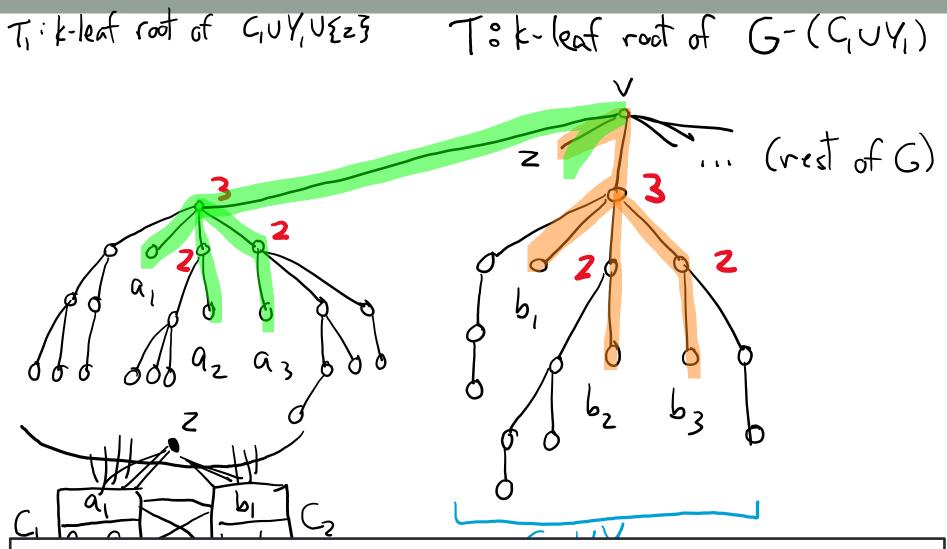
Start with a *k*-leaf root *T* of $G - (C_1 \cup Y_1)$. Somehow, add $C_1 \cup Y_1$ into it while satisfying distance requirements.



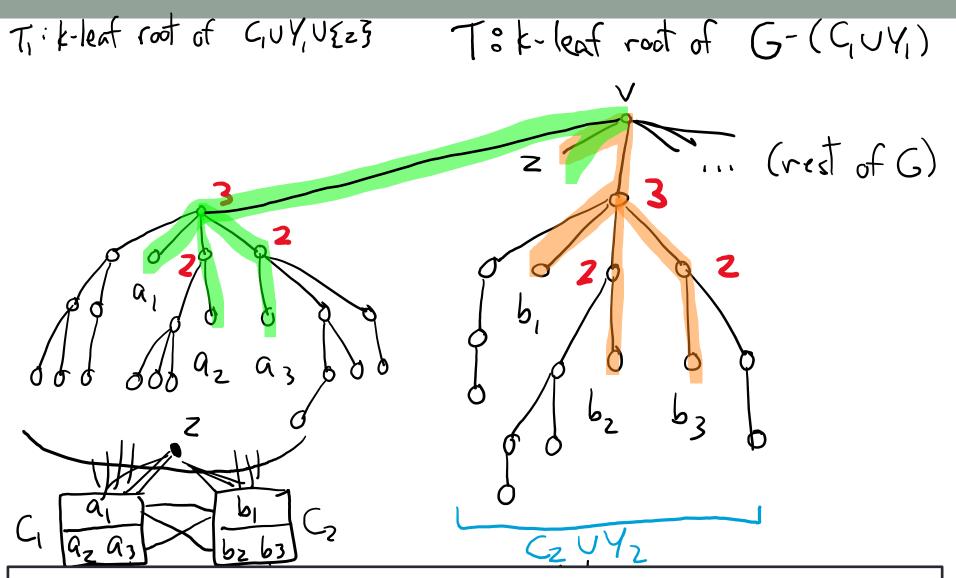




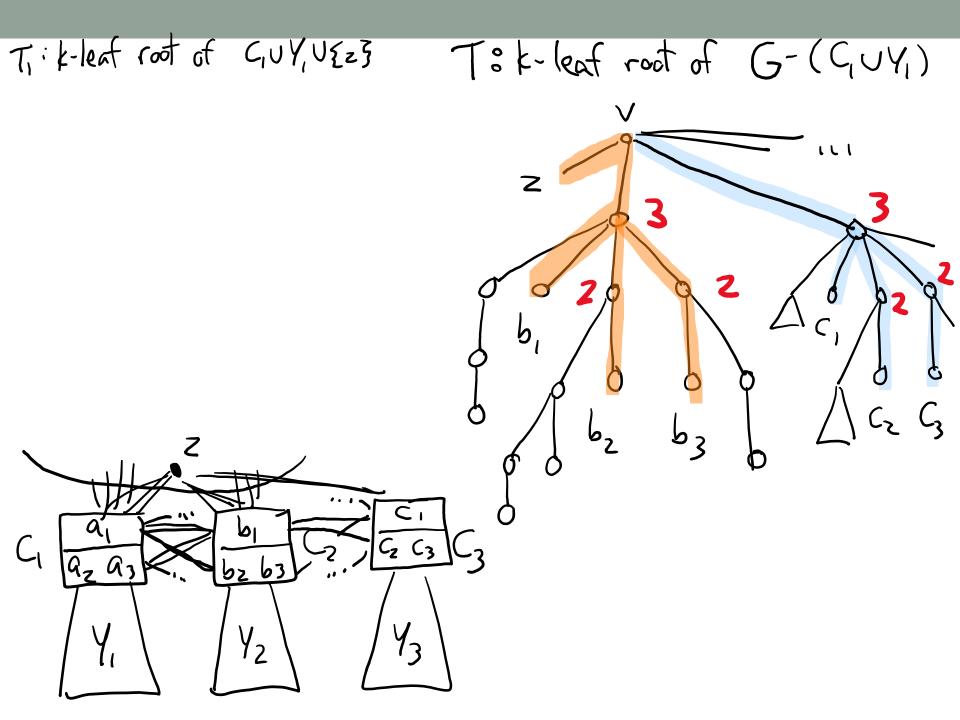




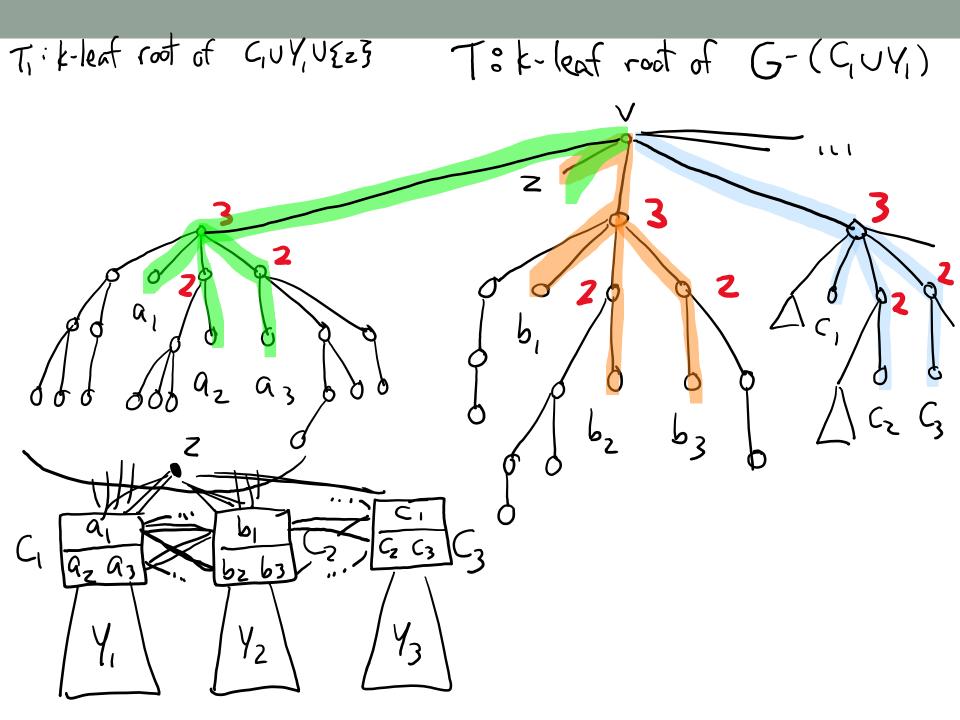
 a_1 and b_1 have the same neighbors in 'rest of *G*', and their distance to the 'rest of *G*' leaves is the same. Thus a_1 has the correct distances to 'rest of *G*'. Same with a_2/a_3 and b_2/b_3 . The Y_1 leaves have the same distances as the Y_2 leaves, all is good.

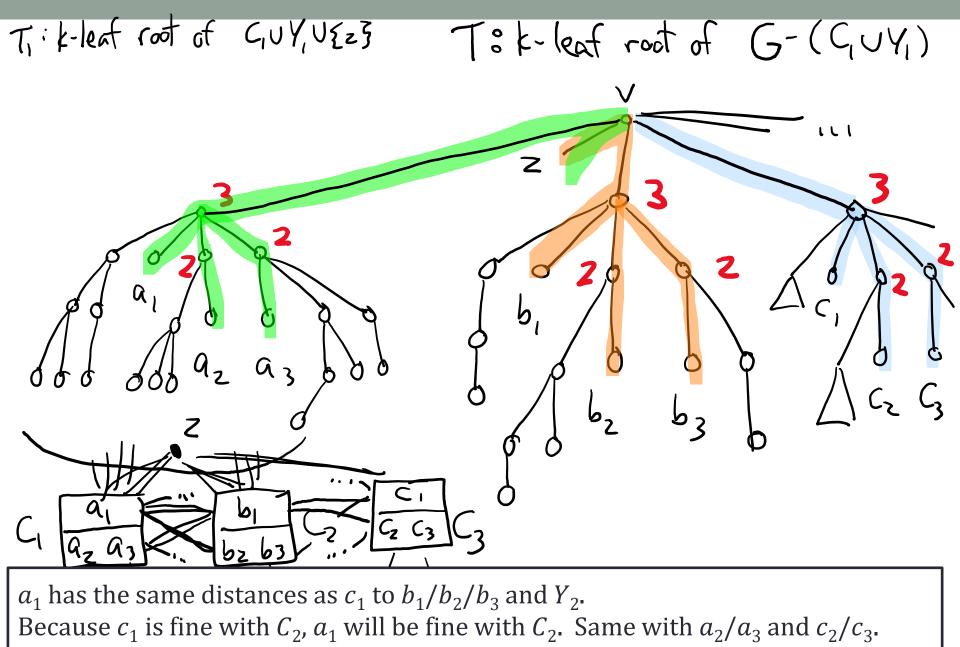


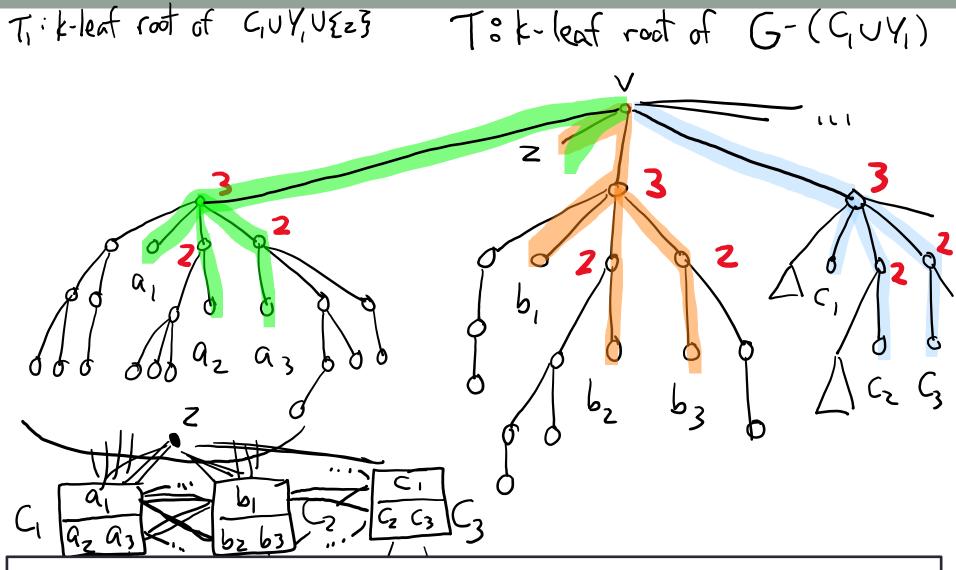
PROBLEM : are the distances relationships ok between members of C_1 and C_2 ? **No way to guarantee it! Idea** : consider another similar homogeneous set $C_3 \cup Y_3$.



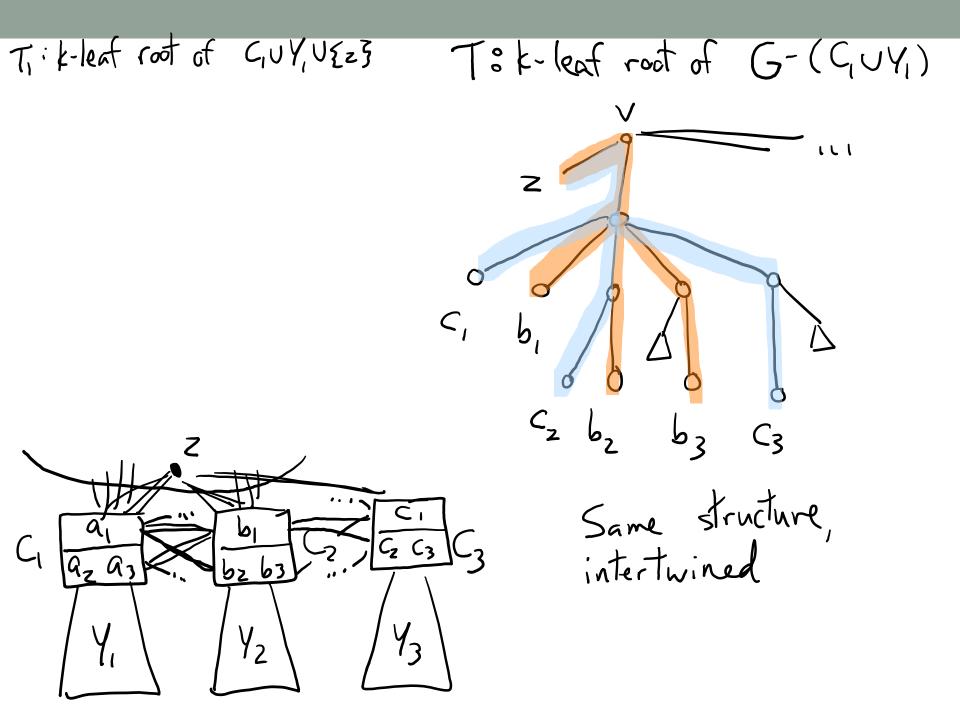
Tik-leaf root of CIUY, UEZ3 T: k-leaf root of G-(GUY) ILI Because we have 3s(k)homogeneous subsets, two of them must be displayed with the same encoding in *T*. CI $\overline{C_2}$ C_3 63 Y_2 43

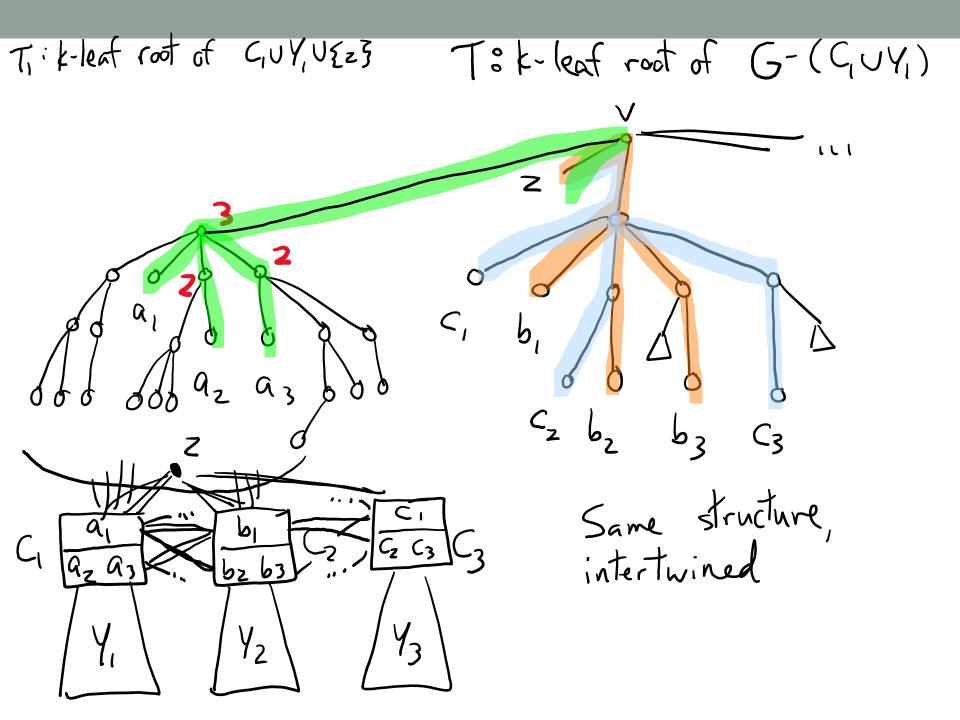


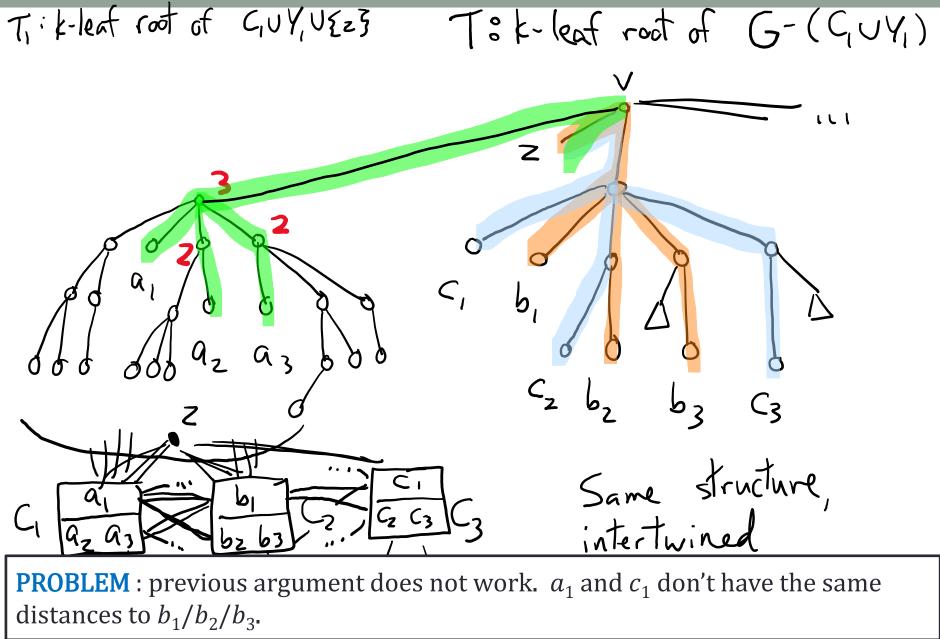


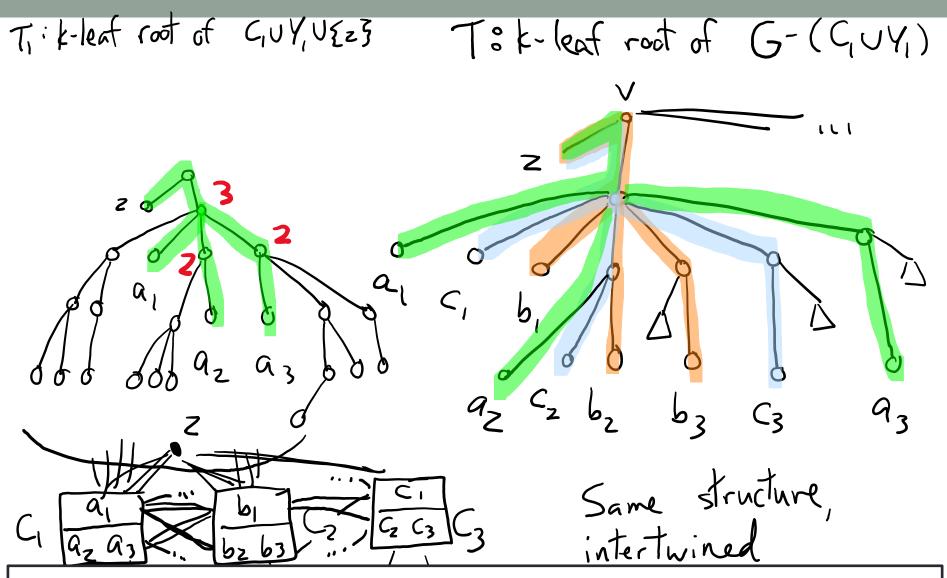


PROBLEM : no guarantee that in T the C_2 and C_3 subtrees are well-separated like that.









SOLUTION : embed T_1 into T by "imitating" the structure of the two other subtrees. When **orange** and **blue** share a common edge, make embedded **green** share that common edge.

```
1 insert(r(T_1^*), r(R)) //initial call
 \mathbf{2}
   Function insert(t, r)
 3
        //t \in V(T_1^*) is the node of T_1^* we are inserting
 \mathbf{4}
        //r \in V(R) is the node of R we are inserting on
 5
        for each child u \in ch_{T_1^*}(t) \setminus ch_{T_1}(t) do
 6
              Insert the T_1^*(u) subtree as a child of r
 \mathbf{7}
         end
 8
         for each child u \in ch_{T_1}(t) do
 9
              if \exists w \in ch_{T_1}(t) \setminus \{u\} such that sig_{\ell_1}(\mathcal{T}_1(w)) = sig_{\ell_1}(\mathcal{T}_1(u)) then
10
                  Insert the T_1^*(u) subtree as a child of r
11
              else
12
                  Let u_2 \in ch_{T_2}(r) such that sig_{\ell_2}(\mathcal{T}_2(u_2)) = sig_{\ell_1}(\mathcal{T}_1(u))
13
                  Let u_3 \in ch_{T_3}(r) such that sig_{\ell_3}(\mathcal{T}_3(u_3)) = sig_{\ell_1}(\mathcal{T}_1(u))
14
                  if u_2 \neq u_3 then
15
                       Insert the T_1^*(u) subtree as a child of r
16
                  else
17
                       if u_2 \neq z then
18
                       Recursively call insert(u, u_2)
19
         end
\mathbf{20}
21 end
```

Bottomline

- If $G C_1 \cup Y_1$ is a *k*-leaf power, then we can find enough similar + homogeneous subsets. With that, we can:
 - 1) find a *k*-leaf root *T* of $G C_1 \cup Y_1$
 - 2) find C_2 and C_3 such that their restrictions in T yields the same layerencoding (need enough homogeneous subsets to guarantee it).
 - 3) find a *k*-leaf root T_1 of $G[C_1 \cup Y_1 \cup \{z\}]$ with that same encoding.
 - 4) embed T_1 into T based on C_2 and C_3 .
 - 5) all distance relationships will be the same as either C_2 or $C_3 =>$ all is good => T is a *k*-leaf root of *G*.
 - That part requires more work than I showed...

Step 4 : making an algorithm out of this

1 Function isLeafPower(G, k) $d \leftarrow 3|S(k, 3k)|2^{|S(k, 3k)|};$ 2 if G has maximum degree at most d^k then 3 Check if G is a k-leaf power and return the result; 4 **foreach** collection $C = \{C_1, \ldots, C_l\}$ of disjoint subsets of V(G), with l = 3|S(k, 3k)| and with each 5 $|C_i| < d^k$ do Let $G' = G - \bigcup_{i \in [l]} C_i;$ 6 Let $X = \{X_1, \ldots, X_t\}$ be the connected components of G'; 7 Let $z \in V(G')$ such that $\bigcup_{i \in [l]} C_i \subseteq N_G(z)$; 8 if z does not exist then 9 continue to the next C: 10 Let $X_z \in X$ such that $z \in X_z$; 11 if some $X_i \in X \setminus \{X_z\}$ has neighbors in two distinct C_i, C_j then 12 continue to the next \mathcal{C} : 13 For $i \in [l]$, let Y_i be the union of every $X_i \in X \setminus X_z$ such that $N_G(X_i) \subseteq C_i$; 14 if $\exists i \in [l], G[C_i \cup Y_i \cup \{z\}]$ has maximum degree above d^k then 15 continue to the next \mathcal{C} : 16 for each set of layering functions $\mathcal{L} = \{\ell_1, \ldots, \ell_l\}$ do 17 if $S = (C, \mathcal{Y} = \{Y_1, \dots, Y_d\}, z, \mathcal{L})$ is a similar structure then 18 foreach $i \in [l]$ do 19 Compute $accept(S, C_i)$: 20 end 21 if all the $accept(S, C_i)$ are equal and non-empty then 22 return $isLeafPower(G - (C_1 \cup Y_1), k)$; 23 end 24 end 25 return "Not a k-leaf power"; 2627 end

1 Function isLeafPower(G, k) $d \leftarrow 3|S(k, 3k)|2^{|S(k, 3k)|};$ 2 if G has maximum degree at most d^k then 3 Check if G is a k-leaf power and return the result; 4 for each collection $C = \{C_1, \ldots, C_l\}$ of disjoint subsets of V(G), with l = 3|S(k, 3k)| and with each 5 $|C_i| \leq d^k$ do Let $G' = G - \bigcup_{i \in [l]} C_i;$ 6 Let $X = \{X_1, \ldots, X_t\}$ be the connected components of G'; 7 Let $z \in V(G')$ such that $\bigcup_{i \in [l]} C_i \subseteq N_G(z)$; 8 if z does not exist then 9 continue to the next C: 10 Let $X_z \in X$ such that $z \in X_z$; 11 if some $X_i \in X \setminus \{X_z\}$ has neighbors in two distinct C_i, C_j then 12 continue to the next \mathcal{C} : 13 For $i \in [l]$, let Y_i be the union of every $X_i \in X \setminus X_z$ such that $N_G(X_i) \subseteq C_i$; 14 if $\exists i \in [l], G[C_i \cup Y_i \cup \{z\}]$ has maximum degree above d^k then 15 continue to the next \mathcal{C} : 16 for each set of layering functions $\mathcal{L} = \{\ell_1, \ldots, \ell_l\}$ do 17 if $S = (C, \mathcal{Y} = \{Y_1, \dots, Y_d\}, z, \mathcal{L})$ is a similar structure then 18 foreach $i \in [l]$ do 19 Compute $accept(S, C_i)$; 20 end 21 if all the $accept(S, C_i)$ are equal and non-empty then 22 return $isLeafPower(G - (C_1 \cup Y_1), k)$; 23 end 24 end 25 return "Not a k-leaf power"; 26 27 end

1 Function isLeafPower(G, k) $d \leftarrow 3|S(k, 3k)|2^{|S(k, 3k)|}$ 2 if G has maximum degree at most d^k then 3 Check if G is a k-leaf power and return the result; 4 **foreach** collection $C = \{C_1, \ldots, C_l\}$ of disjoint subsets of V(G), with l = 3|S(k, 3k)| and with each 5 $|C_i| < d^k$ do Let $G' = G - \bigcup_{i \in [l]} C_i;$ 6 Let $X = \{X_1, \ldots, X_t\}$ be the connected components of G'; 7 Let $z \in V(G')$ such that $\bigcup_{i \in [l]} C_i \subseteq N_G(z)$; 8 if z does not exist then 9 continue to the next C: 10 Let $X_z \in X$ such that $z \in X_z$; 11 if some $X_i \in X \setminus \{X_z\}$ has neighbors in two distinct C_i, C_j then 12 continue to the next \mathcal{C} : 13 For $i \in [l]$, let Y_i be the union of every $X_i \in X \setminus X_z$ such that $N_G(X_i) \subseteq C_i$; 14 if $\exists i \in [l], G[C_i \cup Y_i \cup \{z\}]$ has maximum degree above d^k then 15 continue to the next \mathcal{C} : 16 for each set of layering functions $\mathcal{L} = \{\ell_1, \ldots, \ell_l\}$ do 17 if $S = (C, \mathcal{Y} = \{Y_1, \dots, Y_d\}, z, \mathcal{L})$ is a similar structure then 18 foreach $i \in [l]$ do 19 Compute $accept(\mathcal{S}, C_i)$; 20 end 21 if all the $accept(S, C_i)$ are equal and non-empty then 22 return $isLeafPower(G - (C_1 \cup Y_1), k)$: 23 end 24 end 25 return "Not a k-leaf power"; 2627 end

- Computing $accept(C_i \cup Yi)$
- Recall that $G[Ci \cup Yi \cup \{z\}]$ has maximum degree at most d^k , where here d is that power tower function.
- Also, G[Ci ∪ Yi ∪ {z}] is chordal (assuming it is a k-leaf power).
- Hence, $G[Ci \cup Yi \cup \{z\}]$ has treewidth at most d^k .
- The list of layer-encoded *k*-leaf roots can be computed using dynamic programming on the tree decomposition.
 - See paper...

What's next?

What's next?

Open problem 1

Can the ridiculous $n^{f(k)}$ complexity be improved? Or is the power tower behavior necessary in the exponent?

Open problem 2

Is *k*-leaf power recognition FPT in *k*? i.e. f(k) * poly(n) algorithm?

Open problem 3

Can leaf powers be recognized in polynomial time? Techniques from here usable? (probably not)

Other questions

- Techniques applicable to other tree-definable graph classes? (e.g. PCGs)
- Graph-theoretical characterization of *k*-leaf powers?
 - ad hoc analysis for low degree, higher degree = redundancy

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

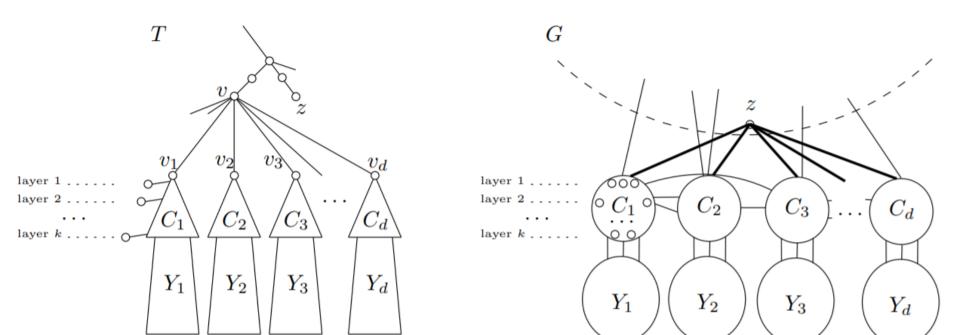
Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

This is proved as follows:

- Show that if a k-leaf root has degree > d, one can find subsets C1 U Y1, ..., Cd U Yd, such that Ci cuts Yi from the rest of G.
- 2. Moreover, C1 U C2 U ... U Cd can be partitioned into layers that have the same neighborhood in G (C1 U Y1 U ... U Cd U Yd).
- 3. Moreover again, G[C1 U Y1] admits the same set of encoded k-leaf roots as some G[Ci U Yi] (to be defined).
- 4. Find a k-leaf root T of G (C1 U Y1). If none exists, we are done. Otherwise, look at how Ci U Yi is organized in T. By (3), C1 U Y1 allows the same k-leaf root organization. We embed C1 U Y1 into T by mimicking C2 U Y2. By (2), this works.

This is proved as follows:

- 1. Show that if a k-leaf root has degree > *d*, one can find subsets C1 U Y1, ..., Cd U Yd, such that Ci cuts Yi from the rest of G.
- 2. Moreover, C1 U C2 U ... U Cd can be partitioned into layers that have the same neighborhood in G (C1 U Y1 U ... U Cd U Yd).
- 3. If d is large, some G[Ci U Yi] and G[Cj U Yj] admit the same set of encoded k-leaf roots (to be defined).
- Find a k-leaf root T of G (Ci U Yi). Look at how Cj U Yj is organized in T. By (3), Ci U Yi allows the same k-leaf root organization. We embed Ci U Yi into T by mimicking Cj U Yj. By (2), this works.



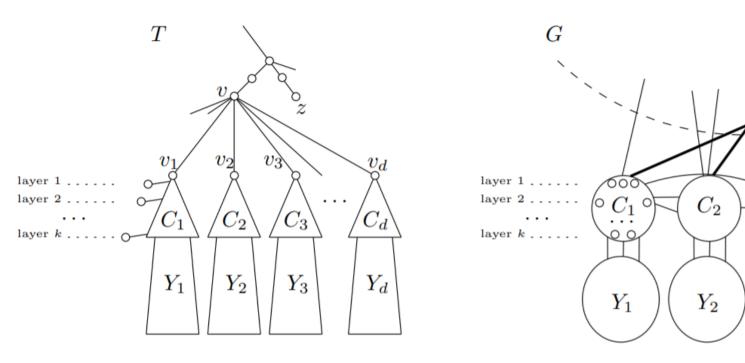
k-leaf roots with high degree

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that **G** is a k-leaf power if and only if G - C is a k-leaf power.

Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

- T = leaf root of G
- v = lowest max of degree >d
- z = closest leaf to v
- Ci = subtrees at distance <= k from v
- Layer j = leaves at distance j from v



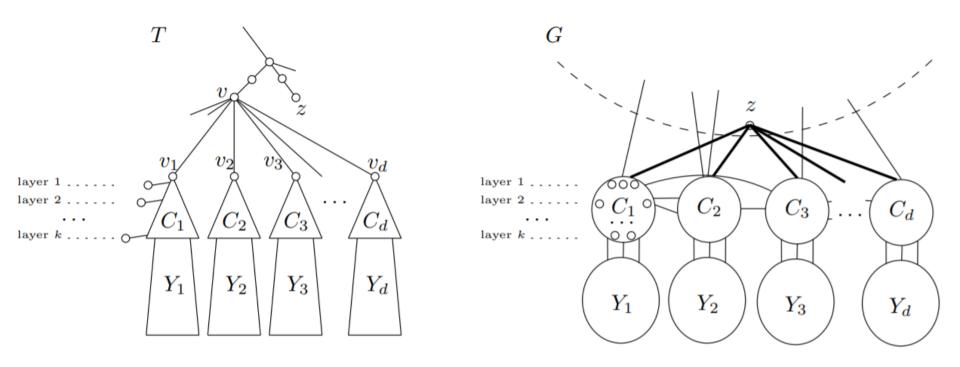
 C_d

 Y_d

 C_3

 Y_3

 Of course, we don't have *T*. Still, by brute-force we can find the *C_i*'s and *Y_i*'s that satisfy the cutset, size and layering properties. This is feasible since the *C_i*'s have bounded size.



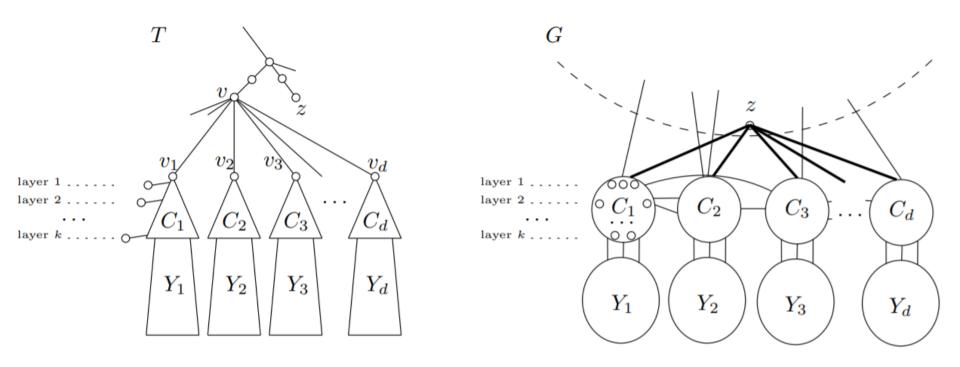
- **3.1** Similar structures A similar structure of a graph G is a tuple S = (C, Y, z, L) where:
 - $C = \{C_1, \ldots, C_d\}$ is a collection of $d \ge 2$ pairwise disjoint, non-empty subsets of vertices of G;
 - *Y* = {*Y*₁,...,*Y_d*} is a collection of pairwise disjoint subsets of vertices of *G*, some of which are possibly empty. Also, *C_i* ∩ *Y_j* = Ø for any *i*, *j* ∈ [*d*];
 - z ∈ V(G) and does not belong to any subset of C or Y;
 - $\mathcal{L} = \{\ell_1, \ldots, \ell_d\}$ is a set of functions where, for each $i \in [d]$, we have $\ell_i : C_i \cup \{z\} \to \{0, 1, \ldots, k\}$. The functions in \mathcal{L} are called *layering functions*.

Additionally, S must satisfy several conditions. Let us denote $C^* = \bigcup_{i \in [d]} C_i$. Let $X = \{X_1, \ldots, X_t\}$ be the connected components of $G - C^*$. For each $i \in [d]$, denote $X^{(i)} = \{X_j \in X : N_G(X_j) \subseteq C_i\}$, i.e. the components that have neighbors only in C_i .

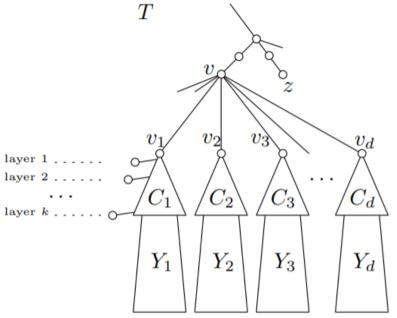
Then all the following conditions must hold:

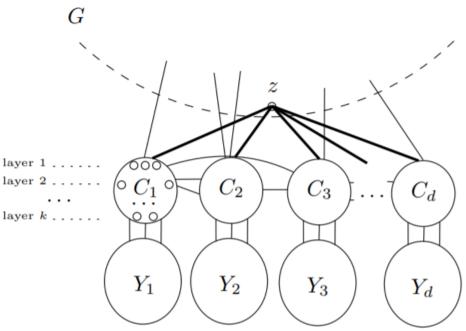
- 1. for each $i \in [d]$, $Y_i = \bigcup_{X_i \in X^{(i)}} X_j$ ($Y_i = \emptyset$ is possible);
- 2. there is exactly one connected component $X_z \in X$ such that for all $i \in [d]$, $N_G(X_z) \cap C_i \neq \emptyset$. Moreover, $z \in X_z$ and $C^* \subseteq N_G(z)$;
- 3. for all $X_j \in X \setminus \{X_z\}, X_j \subseteq Y_i$ for some $i \in [d]$. In particular, X_z is the only connected component of $G C^*$ with neighbors in two or more C_i 's;
- 4. the layering functions L satisfy the following:
 - (a) for each $i \in [d]$, $\ell_i(z) = 0$. Moreover, $\ell_i(x) > 0$ for any $x \in C_i$;
 - (b) for any $i, j \in [d]$ and any $x \in C_i, y \in C_j, \ \ell_i(x) = \ell_j(y)$ implies $N_G(x) \setminus (C_i \cup Y_i \cup C_j \cup Y_j) = N_G(y) \setminus (C_i \cup Y_i \cup C_j \cup Y_j)$. Note that this includes the case i = j;
 - (c) for any $i, j \in [d]$ and any $x \in C_i, y \in C_j, \ell_i(x) + \ell_j(y) \le k$ implies $xy \in E(G)$. Note that this includes the case i = j.
 - (d) for any two distinct $i, j \in [d]$ and any $x \in C_i, y \in C_j, \ell_i(x) + \ell_j(y) > k$ implies $xy \notin E(G)$. Note that this does not include the case i = j

 Of course, we don't have *T*. Still, by brute-force we can find the *C_i*'s and *Y_i*'s that satisfy the cutset, size and layering properties. This is feasible since the *C_i*'s have bounded size.



- Of course, we don't have *T*. Still, by brute-force we can find the *C_i*'s and *Y_i*'s that satisfy the cutset, size and layering properties. This is feasible since the *C_i*'s have bounded size.
- Look at the k-leaf roots of each G[Ci U Yi].
- WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set of layer-encoded k-leaf roots.





• WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set of layer-encoded k-leaf roots.

