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Definition

A graph G is a k-leaf power if there exists a (rooted) tree T such that:
- L(T) = V(G), where L(T) is the set of leaves of T

- uv € E(G) & distr(u,v) < k
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Definition

A graph G is a k-leaf power if there exists a (rooted) tree T such that:
- L(T) = V(G), where L(T) is the set of leaves of T

- uv € E(G) & distr(u,v) < k

Equivalently, G is a k-leaf power if it can be obtained by taking the k-th power
of a tree, and taking the subgraph induced by the leaves of the tree.
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Definition

A graph G is a k-leaf power if there exists a (rooted) tree T such that:
- L(T) = V(G), where L(T) is the set of leaves of T

- uv € E(G) & distr(u,v) < k

Open problems [Nishimura, Ragde, Thilikos, 2002]

- Can k-leaf powers be characterized by chordal + finite set of forbidden
induced subgraphs?

- Complexity of recognizing k-leaf powers if k is in the input?

- Complexity of recognizing k-leaf powers if k is fixed?




Definition

A graph G is a k-leaf power if there exists a (rooted) tree T such that:
- L(T) = V(G), where L(T) is the set of leaves of T

- uv € E(G) & distr(u,v) < k

Open problems [Nishimura, Ragde, Thilikos, 2002]
- Can k-leaf powers be characterized by chordal + finite set of forbidden
induced subgraphs?
- YESfork = 2,3,4. OPENfork > 5.
- Complexity of recognizing k-leaf powers if k is in the input?
- OPEN. Not known to be NP-hard or in P.
- Complexity of recognizing k-leaf powers if k is fixed?
- OPEN for 20 years. In P (this talk).




Theorem

There is an algorithm that, given a graph G, decides whether (¢ is a k-leaf
power in time 0(n/ (), wheren = |V(G)| and f is a function that
depends only on k.




Theorem

There is an algorithm that, given a graph G, decides whether (¢ is a k-leaf
power in time 0(n/ (), wheren = |V(G)| and f is a function that
depends only on k.
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Known results

2-leaf powers = P3-free graphs [folklore]

3-leaf powers = chordal + (bull, gem, dart)-free graphs
|Rautenbach, Disc Maths 2006]

4-leaf powers = chordal + X-free, where X is a finite set of

forbidden subgraphs | Brandstadt et al., TALG 2008]
5-leaf powers recognition in P [Chang & Ko, WG 2007]
6-leaf powers recognition in P [Ducoffe, WG 2019]

Recognizing k-leaf powers is FPT in k 4+ degeneracy(G), and
FPT in k 4 treewidth(G). [Eppstein & Havvaei, IPEC 2018]



Known results

Leaf power = graphs that are k-leaf powers for some k.
All leaf powers are chordal, and also strongly chordal
Converse not true L, WG2017; Jaffke & al., TCS2019]

Subclasses of strongly chordal (interval, rooted directed,
ptolemaic) graphs are easy to recognize

|Brandstadt et al.,, LATIN2008 & DiscMath2010]

Leaf powers have mim-width 1 [Jaffke & al., TCS2019
Leaf powers with star NeS modelsin P [Bergougnoux, 2021]




Other tree-definable classes

- Many other tree-to-graph representations, all with similar
open problems
- Pairwise compatiblity graphs (PCG)
- uv edge iff distance in interval [[, h]
- k-interval PCGs, OR-PCGs and AND-PCGs
 Allow k-intervals, union/intersection of PCGs
+ Orthology graphs
- uv edge iff Ica has label 1
- Fitch graphs
* uv edge iff some edge on u — v path has label 1

- Best match graphs



Applications

- In computational biology:

- V(G) are species. Sequence data tells us that
edge = ‘close’ species in evolution
non-edge = ‘far’ species in evolution, and
k = threshold between close and far.

Goal = reconstruct a tree from that info.
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Applications

- In algorithms:

Many problems are in P, or FPT in k for k-leaf powers.

(dynamic programming on the tree)

Not that interesting, but also true for other tree-to-graph
representations (PCGs, etc.).




Theorem

There is an algorithm that, given a graph G, decides whether (¢ is a k-leaf
power in time 0(n/ (), wheren = |V(G)| and f is a function that
depends only on k.




High-level overview

- Given a graph G, we must decide whether ¢ is a k-leaf power
(assume that k is fixed).



High-level overview

For G a k-leaf power, a k-leaf root of G is a tree with L(T) = V(G)
satisfyinguv € E(G) & distr(u,v) < k.

3 —leaf root




High-level overview

For G a k-leaf power, a k-leaf root of G is a tree with L(T) = V(G)
satisfyinguv € E(G) & distr(u,v) < k.

Theorem (from Eppstein & Havvaei, 2019)
There is a function g such that one can decide in time O(g(tw(G), k)n)
whether G is a k-leaf power, where tw(G) is the treewidth of G.

3 —leaf root
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High-level overview

For G a k-leaf power, a k-leaf root of G is a tree with L(T) = V(G)
satisfyinguv € E(G) & distr(u,v) < k.

Theorem
Let d, k be integers. Then one can decide in time O(g(d¥, k)n) whether a
graph G admits a k-leaf root of maximum degree d.

3 —leaf root
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Theorem
Let d, k be integers. Then one can decide in time 0(g(d¥, k)n) whether a
graph G admits a k-leaf root of maximum degree d.

- Proofidea.
- If G admits a k-leaf root of max degree d, then G has

maximum degree d*.
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Theorem
Let d, k be integers. Then one can decide in time 0(g(d¥, k)n) whether a
graph G admits a k-leaf root of maximum degree d.

- Proof idea.

- If G admits a k-leaf root of max degree d, then G has
maximum degree d*.

- All k-leaf powers are chordal.
- In chordal graphs, we have tw(G) = w(G)- 1 < dk.

- tw(G) = treewidth, w(G) = clique number

- Use Eppstein & Havvaei to decide in time
0(g(tw(G), k)n) = 0(g(dk, k)n) whether G is a k-leaf
poOwer.



Theorem
Let d, k be integers. Then one can decide in time 0(g(d¥, k)n) whether a
graph G admits a k-leaf root of maximum degree d.

- If d is a function of k, problem solved.

- Bottom-line : the difficulty resides in k-leaf roots of high
maximum degree.



k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then

G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.
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k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then

G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.

This says that if G has high-degree k-leaf roots, then G has a redundant
subset of vertices C that can be found and pruned ‘quickly’.
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k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then

G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.

The algorithm:
1) Checkif G admits a k-leaf root of degree at most d = f (k)
using Eppstein & Havvaei. If yes, return “yes”.

2) Otherwise, check if G contains C as described above. If not, return “no”.
3) Otherwise, repeaton G - C.

Finishes in polynomial time, since k is fixed and this is repeated at most n times.



k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then
G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.

Step 1: find lots of subsets C; U Y, such that the C,’s are cutsets, and all have
the same neighborhood structure.

Step 2 : argue that enough of those C; U Y, admit the “same” k-leaf roots.

Step 3 : argue that any such C; U Y, can be removed since we can find a k-
leafrootof G — C; UY,; and embed C,; U Y, into it afterwards.



Step 1 : subsets of vertices with the same
neighborhood structure



Similar sets of vertices

- WesaythatC,U Y,and C,U Y, € V(G) are similar if
» Thereis z such that C, U C, € N(2).
- C,cuts Y, and C, cuts Y, from the rest of the graph

« €, U (C, can be partitioned into layers L, ..., Lk such that vertices in
the same layer have the same neighborsin ¢ - (C;,UY,U(C,UY,).
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Similar sets of vertices

- WesaythatC,U Y,and C,U Y, € V(G) are similar if
» Thereis z such that C, U C, € N(2).
- C,cuts Y, and C, cuts Y, from the rest of the graph

« €, U (C, can be partitioned into layers L, ..., Lk such that vertices in
the same layer have the same neighborsin ¢ - (C;,UY,U(C,UY,).




. A similar structure of a graph G is a tuple § = (C. ). z, £) where: .

e C={Ci,....C4} is a collection of d > 2 pairwise disjoint, non-empty subsets of vertices of G;

e YV = {Y1,...,Ys} is a collection of pairwise disjoint subsets of vertices of G, some of which are possibly
empty. Also, C;NY; =0 for any i, j € [d];

e 2 € V(G) and does not belong to any subset of C or Y;

o L = {l,..., L4} is a set of functions where, for each i € [d], we have ¢; : C; U {z} — {0,1,...,k}. The
functions in £ are called layering functions.
Additionally, S must satisfy several conditions. Let us denote C* = J;y Ci. Let X = {Xi....,X,} be the

connected components of G — C*. For each i € [d], denote X¥) = {X; € X : Ng(X;) C C;}, i.e. the components
that have neighbors only in C;.
Then all the following conditions must hold:

1. foreachie [d], Y; = Ux,ex(-‘l X; (Y; = 0 is possible):

2. there is exactly one connected component X. € X such that for all i € [d], Ng(X:) N C; # 0. Moreover,
z € X: and C* C Ng(2);

3. for all X; € X\ {X.}, X; CY; for some i € [d]. In particular, X. is the only connected component of
G — C* with neighbors in two or more C;’s;

4. the layering functions £ satisfy the following:

(a) for each i € [d], £;(z) = 0. Moreover, £;(z) > 0 for any = € C;;

(b) for any i,j € [d] and any z € Ci,y € Cj, €i(x) = ¢;(y) implies Ng(z) \ (CiUY;UC; UY;) =
Neg(y) \ (CiUY; UC; UY;). Note that this includes the case i = j:

(¢) for any i,j € [d] and any z € Ci,y € Cj, li(x) + £;(y) < k implies zy € E(G). Note that this includes
the case i = j.

(d) for any two distinct i,j € |d] and any z € Ci,y € C;, li(z) + £;(y) > k implies zy ¢ E(G). Note that
this does not include the case i = j



Similar sets of vertices

- WesaythatC,U Y,and C,U Y, € V(G) are similar if
» Thereis z such that C, U C, € N(2).
- C,cuts Y, and C, cuts Y, from the rest of the graph

« €, U (C, can be partitioned into layers L, ..., Lk such that vertices in
the same layer have the same neighborsin ¢ - (C,UY,U(C,UY,).

Lemma
If G has a k-leaf root of maximum degree > d, then there exist

disjoint C; U Y, ...,Cd U Yd pairwise-similar subsets that use the
same z. Also, each C, has size < dk.




G ». T k-leaf rodt Let v be a lowest node
of degree > d. Let z be
the leaf closest to v.
-

Choose d children of v
2V >d QL\ |u ~2n | that are not ancestors
Z of z.




Let v be a lowest node
of degree > d. Let z be
the leaf closest to v.
Choose d children of v
that are not ancestors
of z.
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- Leaves at distance at most k
from z below v are in z’s
neighborhood and form
cutsetsin G.

- Each cutset has size at most
d* (by the choice of v).

- These cutsets are organized
into layers determined by
their distance to v.

u J



Leaves at distance at most k
from z below v are in z’s
neighborhood and form
cutsetsin G.

Each cutset has size at most
d* (by the choice of v).
These cutsets are organized
into layers determined by
their distance to v.







Leaves are distance at most k
from z form cutsets in G.

¥—=¢ q:;




Each cutset has size at most d*
because they are in a subtree of
degree at most d.

L%



Layers = distance from v inT.
Two vertices in the same layer
have the same neighbors outside
of the red and blue subtrees.




Lemma

If G has a k-leaf root of maximum degree > d, then there exist
disjoint C; U Y, ...,Cd U Yd pairwise-similar subsets that use the
same z. Also, each C; has size < dk.




Lemma

If G has a k-leaf root of maximum degree > d, then there exist
disjoint C; U Y, ...,Cd U Yd pairwise-similar subsets that use the
same z. Also, each C; has size < dk.

- So we can find many subsets with the same neighborhood
structure.

- Next : find those that have the “same” k-leaf roots.




Step 2 : similar sets that have the same
encoded k-leaf roots







Similar sets with the same leaf roots

- Let C, U Y, be a set of vertices organized into layers L, ..., Lk.

- Let T, be a k-leafroot of G[C; U Y, U {z}]. The layer-encoding of T, is
obtained by

- restricting T, to C, and z, and their ancestors

- replacing each leaf of C, by its layer number.

- labeling internal nodes by the distance to its closest Y, leaf
- also...

k=4




Similar sets with the same leaf roots

- also...for each node u that has at least 3 identical child subtrees, we
remove one of these subtrees (they are redundant for our purposes).

Il 11 3 22 2 1132 27



Similar sets with the same leaf roots

- also...for each node u that has at least 3 identical child subtrees, we
remove one of these subtrees (they are redundant for our purposes).

113 zz2 113 22



Lemma
The number of possible layer-encoded k-leaf roots is at most s(k), a
function that depends only on k.




Lemma
The number of possible layer-encoded k-leaf roots is at most s(k), a

function that depends only on k.

Proof idea.

Layer-encoded k-leaf roots have height at most k.
Possible layer-encoded k-leaf roots:
-ofheight1:k  (number of layer numbers)

- of height 2 : k3% (k values for internal node, 0, 1 or 2
children of each type of height 1)

- of height 3 : k3¥3"

k3k
k3k3m k times
- of height k : k3



- For C, U Yi,letaccept(C; U Yi) be the set of layer-encoded
k-leaf roots of G|C; U Yi U {z}].

- We say that similar subsets C; U Y, .., C, U Yd are
homogeneous if all accept sets are equal, i.e.

accept(C,U Y,) = ... = accept(Cd vV Yd).












« For C; U Yi,letaccept(Ci U Yi) be the set of layer-encoded
k-leaf roots of G[Ci U Yi U {z}].

- We say that similar subsets C; U Y, .., C, U Yd are
homogeneous if all accept sets are equal, i.e.

accept(C,U Y,) = ... = accept(Cd vV Yd).

Lemma

If G has a k-leaf root of maximum degree d > 3s(k) 2° (%) then G contains
3s(k) similar and homogeneous subsets C; U Y, ..., C35k) U Y35(x). They

all use the same z and |Ci| < dk for each i.




« For C; U Yi,letaccept(Ci U Yi) be the set of layer-encoded
k-leaf roots of G[Ci U Yi U {z}].

- We say that similar subsets C; U Y, .., C, U Yd are
homogeneous if all accept sets are equal, i.e.

accept(C,U Y,) = ... = accept(Cd vV Yd).

Lemma
If G has a k-leaf root of maximum degree d > 3s(k) 2° (), then G contains
3s(k) similar and homogeneous subsets C; U Y, ..., C35k) U Y35(x). They

all use the same z and |Ci| < dk for each i.

Pigeonhole argument. There are 25(%) possible accept sets. If

d > 3s(k) 2°®), we find d similar subsets and at least 3s(k)
of them have the same accept set.



Step 3 : pruning one homogeneous subset
and embedding its k-leaf root



- Recall the thing that I'm trying to do.

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then
G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (n/®)) if it exists.




- Recall the thing that I'm trying to do.

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then
G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (n/®)) if it exists.

LetC, U Yy, ..., C35(k) U Yag(k) be alarge enough number of
similar + homogeneous sets.

Consider G- (C, U Y,).

= If G is a k-leaf power, then G- (C, U Y,)is a k-leaf power.
& Assume that G- (C, U Y,) is a k-leaf power.

GOAL : argue that G is a k-leaf power.

Start with a k-leafrootT of G- (C, U Y,). Somehow,add C, U Y,
into it while satisfying distance requirements.



‘C (Q(x( roo’\\o'c G !CUV,

Attempt 1 : embed using C, andY ,.
C,VU Y,and C, U Y, have the same
acceptsets.
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Attempt 1 : embed using C, andY ,.
C,VU Y,and C, U Y, have the same
acceptsets.

\Y €

— {C L
C s be b3} ° o I

(V‘f ST owc 6)

Y‘ \/2 Highlighted = layer-encoding of T
restrictedtoC, U Y, U {z}




T b-led el of GUYUL3
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T b-led el of GUYUL3

Tek-leed codt of G- (Cuy)




T k-jeg (00! G! C,U!,Uiﬁ T: t* (Q(x( F°5\~ O'F G— !C‘U\/,)

Z e (V‘fST OWCC-)

G

a, and b, have the same neighbors in ‘rest of G’, and their distance to the ‘rest of
G’ leaves is the same. Thus a, has the correct distances to ‘rest of G".

Same with a,/a; and b,/b.

The Y, leaves have the same distances as the Y, leaves, all is good.
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T k-jeg (00! G! C,U!,Uiﬁ T: t* (Q(x( F°5\~ O'F G— !C‘U\/,)
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PROBLEM : are the distances relationships ok between members of ¢, and C,?
No way to guarantee it!

Idea: consider another similar homogeneous set C; U Y.
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T k-jeg (00! G! C,U!,Uiﬁ T: t* (Q(x( F°5\~ O'F G— !C‘U\/,)

Because we have 3s(k)
homogeneous subsets, two of
them must be displayed with
the same encoding in T.




Tibled o of CUY VTS Tokelef ot of G- (CUY,)




T k'kg (00! G! C,U!,Uilg T: k* (Q(x( F°5\~ O'V G— !C‘UV,)

a, has the same distances as ¢, to b,/b,/b; and Y ,,.
Because c, is fine with C,, a, will be fine with C,. Same with a,/a; and c,/cs.
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T k'kg (00! G! C,U!,Uilg T: k* (Q(x( F°5\~ O'V G— !C‘UV,)

PROBLEM : no guarantee thatin T the C, and C; subtrees are well-separated like
that.
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T k'kg (00! G! C,U!,Uiﬁ T: t* (Q(x( F°5\~ O'F G— !C‘U\/,)

PROBLEM : previous argument does not work. a, and ¢, don’t have the same
distances to b,/b,/b.
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SOLUTION : embed T into T by “imitating” the structure of the two other
subtrees. When orange and blue share a common edge, make embedded green
share that common edge.




insert(r(17),r(R)) //initial call

Function insert(t,r)

1
2
3
4 [/t € V(TY) is the node of T} we are inserting
5 [/ € V(R) is the node of R we are inserting on
6 foreach child u € chy-(t) \ chy,(t) do
7 | Insert the 77 (u) subtree as a child of r
5 end
9 foreach child v € chy, (1) do
10 if Jw € chy, (t) \ {u} such that sige, (T1(w)) = sige, (T1(u)) then
11 Insert the 77 (u) subtree as a child of r
12 else
13 Let ua € chy,(r) such that sige,(T2(u2)) = sige, (T1i(u))
14 Let ug € chy,(r) such that sige, (T3(us)) = sige, (T1(u))
15 if us # ug then
16 Insert the 77 (u) subtree as a child of r
17 else
18 if 1o # z then
19 | Recursively call insert(u, us)
20 end

21 end



Bottomline

- If G — C, U Y, is a k-leaf power, then we can find enough
similar + homogeneous subsets. With that, we can:

1y
2)

3)
4)
5)

find a k-leafrootT of G — C, U Y,

find C, and C; such that their restrictions in T yields the same layer-
encoding (need enough homogeneous subsets to guarantee it).

find a k-leafroot T, of G[C,; U Y, U {z}] with that same encoding.
embed T, into T based on C, and Cj.

all distance relationships will be the same as either €, or C; => all is
good =>T is a k-leaf root of G.

* That part requires more work than I showed...



Step 4 : making an algorithm out of this



1 Function isLeafPower(G, k)
2 | d <« 3|S(k,3k)|215*38)I;
3 | if G has mazimum degree at most d* then
4 Check if G is a k-leaf power and return the result:
5 foreach collection C = {C,,...,C;} of disjoint subsets of V(G). with | = 3|S(k,3k)| and with each
|Ci| < d* do
6 Let G’=G—U'—€[l] Ci:
7 Let X = {X;....,X,} be the connected components of G';
8 Let z € V(G') such that |J;c; Ci € Ng(2);
9 if z does not erxist then
10 | continue to the next C;
11 Let X. € X such that z € X_;
12 if some X; € X \ {X:} has neighbors in two distinct C;,C; then
13 | continue to the next C;
14 For i € [l], let Y; be the union of every X; € X \ X, such that Ng(X;) C C;}:
15 if 3i € [I],G[C; VY, U {z}] has mazimum degree above d* then
16 | continue to the next C;
17 foreach set of layering functions £ = {{y,....¢{;} do
18 if S$=(C,Y={",....Ya}, 2z, L) is a similar structure then
19 foreach i € [l| do
20 | Compute accept(S, C;):;
21 end
22 if all the accept(S, C;) are equal and non-empty then
23 | return isLeafPower(G — (Cy UY)),k) ;
24 end
25 end
26 return “Not a k-leaf power”;
27 end

Algorithm 2: Deciding if a graph is a k-leaf power.



1 Function isLeafPower(G, k)
2 | d <« 3|S(k,3k)|215*38)I;
3 | if G has mazimum degree at most d* then
4 Check if G is a k-leaf power and return the result:
5 foreach collection C = {Cy,...,C;} of disjoint subsets of V(G), with | = 3|S(k,3k)| and with each
|Ci| < d* do
6 Let G’=G—Uie[l] Ci:
7 Let X = {X;....,X,} be the connected components of G';
8 Let z € V(G') such that |J;c; Ci € Ng(2);
9 if z does not erxist then
10 | continue to the next C;
11 Let X. € X such that z € X_;
12 if some X; € X \ {X:} has neighbors in two distinct C;,C; then
13 | continue to the next C;
14 For i € [l], let Y; be the union of every X; € X \ X, such that Ng(X;) C C;}:
15 if 3i € [I],G[C; VY, U {z}] has mazimum degree above d* then
16 | continue to the next C;
17 foreach set of layering functions £ = {{y,....¢{;} do
18 if S$=(C,Y={",....Ya}, 2z, L) is a similar structure then
19 foreach i € [I| do
20 | Compute accept(S, C;):;
21 end
22 if all the accept(S,C;) are equal and non-empty then
23 | return isLeafPower(G — (Cy UY)),k) ;
24 end
25 end
26 return “Not a k-leaf power”;
27 end

Algorithm 2: Deciding if a graph is a k-leaf power.



1 Function isLeafPower(G, k)
2 | d <« 3|S(k,3k)|215*38)I;
3 | if G has mazimum degree at most d* then
4 Check if G is a k-leaf power and return the result:
5 foreach collection C = {C,,...,C;} of disjoint subsets of V(G). with | = 3|S(k,3k)| and with each
|Ci| < d* do
6 Let G’=G—U'—€[l] Ci:
7 Let X = {X;....,X,} be the connected components of G';
8 Let z € V(G') such that |J;c; Ci € Ng(2);
9 if z does not erxist then
10 | continue to the next C;
11 Let X. € X such that z € X_;
12 if some X; € X \ {X:} has neighbors in two distinct C;,C; then
13 | continue to the next C;
14 For i € [l], let Y; be the union of every X; € X \ X, such that Ng(X;) C C;}:
15 if 3i € [I],G[C; VY, U {z}] has mazimum degree above d* then
16 | continue to the next C;
17 foreach set of layering functions £ = {{y,....¢{;} do
18 if S$=(C,Y={",....Ya}, 2z, L) is a similar structure then
19 foreach i = [l do
20 I Compute accept(S, C;):
21 end
22 if all the accept(S, C;) are equal and non-empty then
23 | return isLeafPower(G — (Cy UY)),k) ;
24 end
25 end
26 return “Not a k-leaf power”;
27 end

Algorithm 2: Deciding if a graph is a k-leaf power.



- Computing accept(C; U Yi)

- Recall that G[Ci U Yi U {z}] has maximum degree at most
d*, where here d is that power tower function.

« Also, G|Ci U Yi U {z}]is chordal (assuming it is a k-leaf
power).

- Hence, G[Ci U Yi U {z}] has treewidth at most d*.

- The list of layer-encoded k-leaf roots can be computed using
dynamic programming on the tree decomposition.

- See paper...
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What's next?

Open problem 1

Can the ridiculous n/® complexity be improved? Or is the power tower
behavior necessary in the exponent?

Open problem 2
Is k-leaf power recognition FPT in k? i.e. f (k) * poly(n) algorithm?

Open problem 3

Can leaf powers be recognized in polynomial time? Techniques from here
usable? (probably not)

Other questions
- Techniques applicable to other tree-definable graph classes? (e.g. PCGs)

- Graph-theoretical characterization of k-leaf powers?
- ad hoc analysis for low degree, higher degree = redundancy






Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then
G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (n/®)) if it exists.

This is proved as follows:

1. Show thatif a k-leaf root has degree > d, one can find subsets C1 U Y1,
..., Cd U Yd, such that Ci cuts Yi from the rest of G.

2. Moreover,C1 U C2 U ...U Cd can be partitioned into layers that have the
same neighborhoodin G- (C1UY1 U .. UCd U Yd).

3. Moreover again, G[C1 U Y1] admits the same set of encoded k-leaf roots
as some G[Ci U Yi| (to be defined).

4. Find a k-leaf root T of G - (C1 U Y1). If none exists, we are done.
Otherwise, look at how Ci U Yi is organized in T. By (3), C1 U Y1 allows
the same k-leaf root organization. We embed C1 U Y1 into T by
mimicking C2 U Y2. By (2), this works.



This is proved as follows:

1. Show thatif a k-leaf root has degree > d, one can find subsets C1 U Y1,
..., Cd U Yd, such that Ci cuts Yi from the rest of G.

2. Moreover,C1 U C2 U ... U Cd can be partitioned into layers that have the
same neighborhoodin G- (C1UY1 U ..UCd U Yd).

3. Ifdislarge, some G[Ci U Yi] and G[Cj U Yj] admit the same set of
encoded k-leaf roots (to be defined).

4. Find a k-leaf root T of G - (Ci U Yi). Look at how Cj U Yj is organized in
T. By (3), Ci U Yi allows the same k-leaf root organization. We embed
CiUYiinto T by mimicking Cj UYj. By (2), this works.




k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then

G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.







« T =leaf root of G

- v = lowest max of degree >d

- 7z = closest leafto v

» Ci = subtrees at distance <=k from v
- Layer j = leaves at distance j from v




» Of course, we don’t have T'. Still, by brute-force we can find
the C;'s and Y,’s that satisfy the cutset, size and layering
properties. This is feasible since the C;’s have bounded size.




. 3.1 Similar structures A similar structure of a graph G is a tuple S = (C, ), z, L) where: .

o C={C),...,C4} is a collection of d > 2 pairwise disjoint, non-empty subsets of vertices of G:

o V = {Y},....Y,} is a collection of pairwise disjoint subsets of vertices of GG, some of which are possibly
empty. Also, C;NY; =0 for any i, j € [d];

e z € V(G) and does not belong to any subset of C or V:

o L = {#,...,Lq4} is a set of functions where, for each i € [d], we have ¢; : C; U {z} — {0,1,....k}. The
functions in £ are called layering functions.

Additionally, § must satisfy several conditions. Let us denote C* = Uc‘e[d] Ci. Let X = {Xy,..., X} be the

connected components of G — C*. For each i € [d], denote XM = {X; € X : N¢(X;) € Ci}, i.e. the components

that have neighbors only in C;.
Then all the following conditions must hold:

1. for each i € [d], Yi = Uy, . x» X; (Yi = 0 is possible);

2. there is exactly one connected component X. € X such that for all i € [d], Ng(X.) N C; # 0. Moreover,
z € X, and C* C Ng(z);

3. for all X; € X\ {X.}, X; CY, for some i € [d]. In particular, X, is the only connected component of
G — C* with neighbors in two or more C,'s;

4. the layering functions £ satisfy the following:

(a) for each i € [d], £;(z) = 0. Moreover, £;(x) > 0 for any z € Cj;

(b) for any #,j € [d] and any z € Cj,y € Cj, li(z) = £;(y) implies Ng(z) \ (CiUY,UC;LY;) =
Na(y) \ (C;UY; UC; UY;). Note that this includes the case i = j;

(c) for any i,j € [d] and any z € Ci,y € C;, £;(x) + £;(y) < k implies zy € E(G). Note that this includes
the case i = j.

(d) for any two distinct i,j € [d] and any x € Cy,y € Cy, €i(x) + £;(y) > k implies zy ¢ E(G). Note that
this does not include the case i = j



» Of course, we don’t have T'. Still, by brute-force we can find
the C;'s and Y,’s that satisfy the cutset, size and layering
properties. This is feasible since the C;’s have bounded size.




» Of course, we don’t have T'. Still, by brute-force we can find
the C;'s and Y,’s that satisfy the cutset, size and layering
properties. This is feasible since the C;’s have bounded size.

- Look at the k-leaf roots of each G[Ci U Yi].

- WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set
of layer-encoded k-leaf roots.




- WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set
of layer-encoded k-leaf roots.



