
RECOGNIZING K-LEAF POWERS IN
POLYNOMIAL TIME, FOR CONSTANT K

Manuel Lafond, Université de Sherbrooke, Canada

Definition
A graph 𝐺 is a 𝒌-leaf power if there exists a (rooted) tree 𝑇 such that:
- 𝑳 𝑻 = 𝑽(𝑮), where 𝐿(𝑇) is the set of leaves of 𝑇
- 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌

a

b

c

e

d

𝐺

3 − 𝑙𝑒𝑎𝑓 𝑝𝑜𝑤𝑒𝑟 ?

c

ed

b

a𝑇 :
a

b

c

e

d

𝐺

3 − 𝑙𝑒𝑎𝑓 𝑝𝑜𝑤𝑒𝑟

Definition
A graph 𝐺 is a 𝒌-leaf power if there exists a (rooted) tree 𝑇 such that:
- 𝑳 𝑻 = 𝑽(𝑮), where 𝐿(𝑇) is the set of leaves of 𝑇
- 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌

a

b

c

e

d

𝐺

3 − 𝑙𝑒𝑎𝑓 𝑝𝑜𝑤𝑒𝑟

Definition
A graph 𝐺 is a 𝒌-leaf power if there exists a (rooted) tree 𝑇 such that:
- 𝑳 𝑻 = 𝑽(𝑮), where 𝐿(𝑇) is the set of leaves of 𝑇
- 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌

Equivalently, 𝐺 is a 𝑘-leaf power if it can be obtained by taking the 𝑘-th power
of a tree, and taking the subgraph induced by the leaves of the tree.

c

ed

b

a𝑇 :

Definition
A graph 𝐺 is a 𝒌-leaf power if there exists a (rooted) tree 𝑇 such that:
- 𝑳 𝑻 = 𝑽(𝑮), where 𝐿(𝑇) is the set of leaves of 𝑇
- 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌

Open problems [Nishimura, Ragde, Thilikos, 2002]

- Can k-leaf powers be characterized by chordal + finite set of forbidden

induced subgraphs?

- Complexity of recognizing 𝑘-leaf powers if 𝑘 is in the input?

- Complexity of recognizing 𝑘-leaf powers if 𝑘 is fixed?

Definition
A graph 𝐺 is a 𝒌-leaf power if there exists a (rooted) tree 𝑇 such that:
- 𝑳 𝑻 = 𝑽(𝑮), where 𝐿(𝑇) is the set of leaves of 𝑇
- 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌

Open problems [Nishimura, Ragde, Thilikos, 2002]

- Can k-leaf powers be characterized by chordal + finite set of forbidden

induced subgraphs?

- YES for 𝒌 = 𝟐, 𝟑, 𝟒. OPEN for 𝒌 ≥ 𝟓.

- Complexity of recognizing 𝑘-leaf powers if 𝑘 is in the input?

- OPEN. Not known to be NP-hard or in P.

- Complexity of recognizing 𝑘-leaf powers if 𝑘 is fixed?

- OPEN for 20 years. In P (this talk).

Theorem
There is an algorithm that, given a graph 𝐺, decides whether 𝐺 is a 𝑘-leaf

power in time 𝑂(𝑛𝑓(𝑘)), where 𝑛 = |𝑉(𝐺)| and 𝑓 is a function that
depends only on 𝑘.

Theorem
There is an algorithm that, given a graph 𝐺, decides whether 𝐺 is a 𝑘-leaf

power in time 𝑂(𝑛𝑓(𝑘)), where 𝑛 = |𝑉(𝐺)| and 𝑓 is a function that
depends only on 𝑘.

𝒇 𝒌 ≃ 𝟐
𝒌𝟑

𝒌𝟑
𝒌𝟑

𝒌𝟑𝒌
…

𝒌 times

Known results

- 2-leaf powers = P3-free graphs [folklore]

- 3-leaf powers = chordal + (bull, gem, dart)-free graphs
[Rautenbach, Disc Maths 2006]

- 4-leaf powers = chordal + X-free, where X is a finite set of
forbidden subgraphs [Brandstädt et al., TALG 2008]

- 5-leaf powers recognition in P [Chang & Ko, WG 2007]

- 6-leaf powers recognition in P [Ducoffe, WG 2019]

- Recognizing 𝑘-leaf powers is FPT in k + degeneracy(G), and
FPT in k + treewidth(G). [Eppstein & Havvaei, IPEC 2018]

Known results

- Leaf power = graphs that are 𝑘-leaf powers for some 𝑘.

- All leaf powers are chordal, and also strongly chordal

- Converse not true [L, WG2017; Jaffke & al., TCS2019]

- Subclasses of strongly chordal (interval, rooted directed,
ptolemaic) graphs are easy to recognize

[Brandstädt et al., LATIN2008 & DiscMath2010]

- Leaf powers have mim-width 1 [Jaffke & al., TCS2019]

- Leaf powers with star NeS models in P [Bergougnoux, 2021]

Other tree-definable classes

• Many other tree-to-graph representations, all with similar
open problems

• Pairwise compatiblity graphs (PCG)

• 𝑢𝑣 edge iff distance in interval [𝑙, ℎ]

• k-interval PCGs, OR-PCGs and AND-PCGs

• Allow 𝑘-intervals, union/intersection of PCGs

• Orthology graphs

• 𝑢𝑣 edge iff lca has label 1

• Fitch graphs

• 𝑢𝑣 edge iff some edge on 𝑢 − 𝑣 path has label 1

• Best match graphs

• …

Applications

• In computational biology:

- V(G) are species. Sequence data tells us that

- edge = ‘close’ species in evolution

- non-edge = ‘far’ species in evolution, and

- k = threshold between close and far.

- Goal = reconstruct a tree from that info.

c

ed

b

a𝑇 :
a

b

c

e

d

𝐺

Applications

• In algorithms:

- Many problems are in P, or FPT in k for k-leaf powers.

(dynamic programming on the tree)

- Not that interesting, but also true for other tree-to-graph

representations (PCGs, etc.).

c

ed

b

a𝑇 :
a

b

c

e

d

𝐺

Theorem
There is an algorithm that, given a graph 𝐺, decides whether 𝐺 is a 𝑘-leaf

power in time 𝑂(𝑛𝑓(𝑘)), where 𝑛 = |𝑉(𝐺)| and 𝑓 is a function that
depends only on 𝑘.

High-level overview

• Given a graph 𝐺, we must decide whether 𝐺 is a 𝑘-leaf power
(assume that 𝑘 is fixed).

a

b

c

e

d

𝐺

High-level overview

For 𝐺 a 𝑘-leaf power, a 𝒌-leaf root of 𝑮 is a tree with 𝑳(𝑻) = 𝑽(𝑮)
satisfying 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌.

a

b

c

e

d

𝐺

3 − 𝑙𝑒𝑎𝑓 𝑟𝑜𝑜𝑡

c

ed

b

a𝑇 :

High-level overview

a

b

c

e

d

𝐺

Theorem (from Eppstein & Havvaei, 2019)
There is a function 𝑔 such that one can decide in time O(𝑔 𝑡𝑤 𝐺 , 𝑘 𝑛)
whether 𝐺 is a 𝑘-leaf power, where 𝑡𝑤(𝐺) is the treewidth of 𝐺.

For 𝐺 a 𝑘-leaf power, a 𝒌-leaf root of 𝑮 is a tree with 𝑳(𝑻) = 𝑽(𝑮)
satisfying 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌.

c

ed

b

a𝑇 :

3 − 𝑙𝑒𝑎𝑓 𝑟𝑜𝑜𝑡

High-level overview

a

b

c

e

d

𝐺

Theorem
Let 𝑑, 𝑘 be integers. Then one can decide in time O(𝑔 𝑑𝑘, 𝑘 𝑛) whether a
graph 𝐺 admits a 𝑘-leaf root of maximum degree 𝒅.

For 𝐺 a 𝑘-leaf power, a 𝒌-leaf root of 𝑮 is a tree with 𝑳(𝑻) = 𝑽(𝑮)
satisfying 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌.

c

ed

b

a𝑇 :

3 − 𝑙𝑒𝑎𝑓 𝑟𝑜𝑜𝑡

• Proof idea.

• If G admits a 𝑘-leaf root of max degree 𝑑, then 𝐺 has
maximum degree 𝑑𝑘.

Theorem
Let 𝑑, 𝑘 be integers. Then one can decide in time O(𝑔 𝑑𝑘, 𝑘 𝑛) whether a
graph 𝐺 admits a 𝑘-leaf root of maximum degree 𝒅.

• Proof idea.

• If G admits a 𝑘-leaf root of max degree 𝑑, then 𝐺 has
maximum degree 𝑑𝑘.

• All 𝑘-leaf powers are chordal.

• In chordal graphs, we have 𝑡𝑤(𝐺) = 𝑤(𝐺) – 1 ≤ 𝑑𝑘.
• tw(G) = treewidth, w(G) = clique number

• Use Eppstein & Havvaei to decide in time
𝑂 𝑔 𝑡𝑤 𝐺 , 𝑘 𝑛 = 𝑂(𝑔 𝑑𝑘, 𝑘 𝑛) whether 𝐺 is a 𝑘-leaf
power.

Theorem
Let 𝑑, 𝑘 be integers. Then one can decide in time O(𝑔 𝑑𝑘, 𝑘 𝑛) whether a
graph 𝐺 admits a 𝑘-leaf root of maximum degree 𝒅.

• If 𝑑 is a function of 𝑘, problem solved.

• Bottom-line : the difficulty resides in 𝑘-leaf roots of high
maximum degree.

Theorem
Let 𝑑, 𝑘 be integers. Then one can decide in time O(𝑔 𝑑𝑘, 𝑘 𝑛) whether a
graph 𝐺 admits a 𝑘-leaf root of maximum degree 𝒅.

𝑘-leaf roots with high degree

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘) if it exists.

𝑘-leaf roots with high degree

This says that if 𝐺 has high-degree 𝑘-leaf roots, then 𝐺 has a redundant
subset of vertices 𝐶 that can be found and pruned ‘quickly’.

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘) if it exists.

𝑘-leaf roots with high degree

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘) if it exists.

The algorithm:
1) Check if 𝐺 admits a 𝑘-leaf root of degree at most 𝑑 = 𝑓 𝑘

using Eppstein & Havvaei. If yes, return “yes”.
2) Otherwise, check if 𝐺 contains 𝐶 as described above. If not, return “no”.
3) Otherwise, repeat on 𝐺 – 𝐶.

Finishes in polynomial time, since 𝑘 is fixed and this is repeated at most 𝑛 times.

𝑘-leaf roots with high degree

Step 1 : find lots of subsets 𝐶𝑖 ∪ 𝑌𝑖 such that the 𝐶𝑖’s are cutsets, and all have
the same neighborhood structure.

Step 2 : argue that enough of those 𝐶𝑖 ∪ 𝑌𝑖 admit the “same” 𝑘-leaf roots.

Step 3 : argue that any such 𝐶𝑖 ∪ 𝑌𝑖 can be removed since we can find a 𝑘-
leaf root of 𝐺 − 𝐶𝑖 ∪ 𝑌𝑖 and embed 𝐶𝑖 ∪ 𝑌𝑖 into it afterwards.

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘) if it exists.

Step 1 : subsets of vertices with the same
neighborhood structure

Similar sets of vertices
• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• There is 𝑧 such that 𝐶1 ∪ 𝐶2 ⊆ 𝑁(𝑧).

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that vertices in
the same layer have the same neighbors in 𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).

Similar sets of vertices
• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• There is 𝑧 such that 𝐶1 ∪ 𝐶2 ⊆ 𝑁(𝑧).

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that vertices in
the same layer have the same neighbors in 𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).

Similar sets of vertices
• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• There is 𝑧 such that 𝐶1 ∪ 𝐶2 ⊆ 𝑁(𝑧).

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that vertices in
the same layer have the same neighbors in 𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).

Similar sets of vertices
• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• There is 𝑧 such that 𝐶1 ∪ 𝐶2 ⊆ 𝑁(𝑧).

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that vertices in
the same layer have the same neighbors in 𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).

Similar sets of vertices
• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• There is 𝑧 such that 𝐶1 ∪ 𝐶2 ⊆ 𝑁(𝑧).

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that vertices in
the same layer have the same neighbors in 𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).

Similar sets of vertices
• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• There is 𝑧 such that 𝐶1 ∪ 𝐶2 ⊆ 𝑁(𝑧).

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that vertices in
the same layer have the same neighbors in 𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).

Lemma
If 𝐺 has a 𝑘-leaf root of maximum degree > 𝑑, then there exist
disjoint 𝐶1 ∪ 𝑌1, … , 𝐶𝑑 ∪ 𝑌𝑑 pairwise-similar subsets that use the
same 𝑧. Also, each 𝐶𝑖 has size ≤ 𝑑𝑘.

Similar sets of vertices
• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• There is 𝑧 such that 𝐶1 ∪ 𝐶2 ⊆ 𝑁(𝑧).

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that vertices in
the same layer have the same neighbors in 𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).

Let 𝑣 be a lowest node
of degree > 𝑑. Let 𝑧 be
the leaf closest to 𝑣.
Choose 𝑑 children of 𝑣
that are not ancestors
of 𝑧.

Let 𝑣 be a lowest node
of degree > 𝑑. Let 𝑧 be
the leaf closest to 𝑣.
Choose 𝑑 children of 𝑣
that are not ancestors
of 𝑧.

- Leaves at distance at most 𝑘
from 𝑧 below 𝑣 are in 𝑧’s
neighborhood and form
cutsets in 𝐺.

- Each cutset has size at most
𝑑𝑘 (by the choice of 𝑣).

- These cutsets are organized
into layers determined by
their distance to 𝑣.

- Leaves at distance at most 𝑘
from 𝑧 below 𝑣 are in 𝑧’s
neighborhood and form
cutsets in 𝐺.

- Each cutset has size at most
𝑑𝑘 (by the choice of 𝑣).

- These cutsets are organized
into layers determined by
their distance to 𝑣.

Leaves are distance at most k
from 𝑧 form cutsets in 𝐺.

Each cutset has size at most 𝑑𝑘

because they are in a subtree of
degree at most 𝑑.

Layers = distance from 𝑣 in 𝑇.
Two vertices in the same layer
have the same neighbors outside
of the red and blue subtrees.

Lemma
If 𝐺 has a 𝑘-leaf root of maximum degree > 𝑑, then there exist
disjoint 𝐶1 ∪ 𝑌1, … , 𝐶𝑑 ∪ 𝑌𝑑 pairwise-similar subsets that use the
same 𝑧. Also, each 𝐶𝑖 has size ≤ 𝑑𝑘.

• So we can find many subsets with the same neighborhood
structure.

• Next : find those that have the “same” 𝑘-leaf roots.

Lemma
If 𝐺 has a 𝑘-leaf root of maximum degree > 𝑑, then there exist
disjoint 𝐶1 ∪ 𝑌1, … , 𝐶𝑑 ∪ 𝑌𝑑 pairwise-similar subsets that use the
same 𝑧. Also, each 𝐶𝑖 has size ≤ 𝑑𝑘.

Step 2 : similar sets that have the same
encoded 𝑘-leaf roots

Similar sets with the same leaf roots
• Let 𝐶1 ∪ 𝑌1 be a set of vertices organized into layers 𝐿1, … , 𝐿𝑘.

• Let 𝑇1 be a 𝑘-leaf root of G[𝐶1 ∪ 𝑌1 ∪ {𝑧}]. The layer-encoding of 𝑇1 is
obtained by

• restricting 𝑇1 to 𝐶1 and 𝑧, and their ancestors

• replacing each leaf of 𝐶1 by its layer number.

• labeling internal nodes by the distance to its closest 𝑌1 leaf

• also…

Similar sets with the same leaf roots
• also…for each node 𝑢 that has at least 3 identical child subtrees, we

remove one of these subtrees (they are redundant for our purposes).

Similar sets with the same leaf roots
• also…for each node 𝑢 that has at least 3 identical child subtrees, we

remove one of these subtrees (they are redundant for our purposes).

Lemma
The number of possible layer-encoded 𝑘-leaf roots is at most 𝑠(𝑘), a
function that depends only on 𝑘.

Proof idea.

Layer-encoded k-leaf roots have height at most k.

Possible layer-encoded k-leaf roots:

- of height 1 : 𝑘 (number of layer numbers)

- of height 2 : 𝑘3𝑘 (𝑘 values for internal node, 0, 1 or 2
children of each type of height 1)

- of height 3 : 𝑘3𝑘3𝑘

- …

- of height 𝑘 :

Lemma
The number of possible layer-encoded 𝑘-leaf roots is at most 𝑠(𝑘), a
function that depends only on 𝑘.

𝑘3
𝑘3

𝑘3

𝑘3𝑘
…

𝑘 times

• For 𝐶𝑖 ∪ 𝑌𝑖, let 𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝒊 ∪ 𝒀𝒊) be the set of layer-encoded
𝑘-leaf roots of 𝐺[𝐶𝑖 ∪ 𝑌𝑖 ∪ {𝑧}].

• We say that similar subsets 𝐶1 ∪ 𝑌1, …, 𝐶𝑑 ∪ 𝑌𝑑 are
homogeneous if all accept sets are equal, i.e.

𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝟏 ∪ 𝒀𝟏) = … = 𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝒅 ∪ 𝒀𝒅).

• For 𝐶𝑖 ∪ 𝑌𝑖, let 𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝒊 ∪ 𝒀𝒊) be the set of layer-encoded
𝑘-leaf roots of 𝐺[𝐶𝑖 ∪ 𝑌𝑖 ∪ {𝑧}].

• We say that similar subsets 𝐶1 ∪ 𝑌1, …, 𝐶𝑑 ∪ 𝑌𝑑 are
homogeneous if all accept sets are equal, i.e.

𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝟏 ∪ 𝒀𝟏) = … = 𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝒅 ∪ 𝒀𝒅).

Lemma

If G has a k-leaf root of maximum degree d > 3𝑠 𝑘 2𝑠(𝑘), then 𝐺 contains
3𝑠(𝑘) similar and homogeneous subsets 𝐶1 ∪ 𝑌1, …, 𝐶3𝑠(𝑘) ∪ 𝑌3𝑠(𝑘). They

all use the same 𝑧 and |𝐶𝑖| ≤ 𝑑𝑘 for each 𝑖.

• For 𝐶𝑖 ∪ 𝑌𝑖, let 𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝒊 ∪ 𝒀𝒊) be the set of layer-encoded
𝑘-leaf roots of 𝐺[𝐶𝑖 ∪ 𝑌𝑖 ∪ {𝑧}].

• We say that similar subsets 𝐶1 ∪ 𝑌1, …, 𝐶𝑑 ∪ 𝑌𝑑 are
homogeneous if all accept sets are equal, i.e.

𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝟏 ∪ 𝒀𝟏) = … = 𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝒅 ∪ 𝒀𝒅).

Pigeonhole argument. There are 2𝑠(𝑘) possible accept sets. If
𝑑 > 3𝑠 𝑘 2𝑠(𝑘), we find 𝑑 similar subsets and at least 3𝑠(𝑘)
of them have the same accept set.

Lemma

If G has a k-leaf root of maximum degree d > 3𝑠 𝑘 2𝑠(𝑘), then 𝐺 contains
3𝑠(𝑘) similar and homogeneous subsets 𝐶1 ∪ 𝑌1, …, 𝐶3𝑠(𝑘) ∪ 𝑌3𝑠(𝑘). They

all use the same 𝑧 and |𝐶𝑖| ≤ 𝑑𝑘 for each 𝑖.

Step 3 : pruning one homogeneous subset
and embedding its k-leaf root

• Recall the thing that I’m trying to do.

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘) if it exists.

• Recall the thing that I’m trying to do.

Let 𝐶1 ∪ 𝑌1, …, 𝐶3𝑠(𝑘) ∪ 𝑌3𝑠(𝑘) be a large enough number of

similar + homogeneous sets.

Consider 𝐺– (𝐶1 ∪ 𝑌1).

⇒ If 𝐺 is a 𝑘-leaf power, then 𝐺– (𝐶1 ∪ 𝑌1)is a 𝑘-leaf power.

⇐ Assume that 𝐺– (𝐶1 ∪ 𝑌1) is a 𝑘-leaf power.

GOAL : argue that 𝐺 is a 𝑘-leaf power.

Start with a 𝑘-leaf root 𝑇 of 𝐺– (𝐶1 ∪ 𝑌1). Somehow, add 𝐶1 ∪ 𝑌1

into it while satisfying distance requirements.

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘) if it exists.

Attempt 1 : embed using 𝐶2 and 𝑌2.
𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 have the same
accept sets.

Attempt 1 : embed using 𝐶2 and 𝑌2.
𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 have the same
accept sets.

Highlighted = layer-encoding of T
restricted to C2 ∪ Y2 ∪ {z}

𝑎1 and 𝑏1 have the same neighbors in ‘rest of 𝐺’, and their distance to the ‘rest of
𝐺’ leaves is the same. Thus 𝑎1 has the correct distances to ‘rest of 𝐺’.
Same with 𝑎2/𝑎3 and 𝑏2/𝑏3.
The 𝑌1 leaves have the same distances as the 𝑌2 leaves, all is good.

PROBLEM : are the distances relationships ok between members of 𝐶1 and 𝐶2?
No way to guarantee it!
Idea : consider another similar homogeneous set 𝐶3 ∪ 𝑌3.

Because we have 3𝑠(𝑘)
homogeneous subsets, two of
them must be displayed with
the same encoding in 𝑇.

𝑎1 has the same distances as 𝑐1 to 𝑏1/𝑏2/𝑏3 and 𝑌2.
Because 𝑐1 is fine with 𝐶2, 𝑎1 will be fine with 𝐶2. Same with 𝑎2/𝑎3 and 𝑐2/𝑐3.

PROBLEM : no guarantee that in 𝑇 the 𝐶2 and 𝐶3 subtrees are well-separated like
that.

PROBLEM : previous argument does not work. 𝑎1 and 𝑐1 don’t have the same
distances to 𝑏1/𝑏2/𝑏3.

SOLUTION : embed 𝑇1 into 𝑇 by “imitating” the structure of the two other
subtrees. When orange and blue share a common edge, make embedded green
share that common edge.

Bottomline

• If 𝐺 − 𝐶1 ∪ 𝑌1 is a 𝑘-leaf power, then we can find enough
similar + homogeneous subsets. With that, we can:
1) find a 𝑘-leaf root 𝑇 of 𝐺 − 𝐶1 ∪ 𝑌1

2) find 𝐶2 and 𝐶3 such that their restrictions in 𝑇 yields the same layer-
encoding (need enough homogeneous subsets to guarantee it).

3) find a 𝑘-leaf root 𝑇1 of 𝐺[𝐶1 ∪ 𝑌1 ∪ {𝑧}] with that same encoding.

4) embed 𝑇1 into 𝑇 based on 𝐶2 and 𝐶3.

5) all distance relationships will be the same as either 𝐶2 or 𝐶3 => all is
good => 𝑇 is a 𝑘-leaf root of 𝐺.

• That part requires more work than I showed…

Step 4 : making an algorithm out of this

• Computing 𝒂𝒄𝒄𝒆𝒑𝒕(𝑪𝒊 ∪ 𝒀𝒊)

• Recall that 𝐺[𝐶𝑖 ∪ 𝑌𝑖 ∪ {𝑧}] has maximum degree at most
𝑑𝑘, where here 𝑑 is that power tower function.

• Also, 𝐺[𝐶𝑖 ∪ 𝑌𝑖 ∪ {𝑧}] is chordal (assuming it is a 𝑘-leaf
power).

• Hence, 𝐺[𝐶𝑖 ∪ 𝑌𝑖 ∪ {𝑧}] has treewidth at most 𝑑𝑘.

• The list of layer-encoded 𝑘-leaf roots can be computed using
dynamic programming on the tree decomposition.
• See paper…

What’s next?

What’s next?

Open problem 1

Can the ridiculous 𝑛𝑓(𝑘) complexity be improved? Or is the power tower
behavior necessary in the exponent?

Open problem 2

Is 𝑘-leaf power recognition FPT in 𝑘? i.e. 𝑓 𝑘 ∗ 𝑝𝑜𝑙𝑦(𝑛) algorithm?

Open problem 3

Can leaf powers be recognized in polynomial time? Techniques from here
usable? (probably not)

Other questions

• Techniques applicable to other tree-definable graph classes? (e.g. PCGs)

• Graph-theoretical characterization of 𝑘-leaf powers?
• ad hoc analysis for low degree, higher degree = redundancy

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘) if it exists.

This is proved as follows:
1. Show that if a k-leaf root has degree > 𝑑, one can find subsets C1 U Y1,

…, Cd U Yd, such that Ci cuts Yi from the rest of G.
2. Moreover, C1 U C2 U … U Cd can be partitioned into layers that have the

same neighborhood in G – (C1 U Y1 U … U Cd U Yd).
3. Moreover again, G[C1 U Y1] admits the same set of encoded k-leaf roots

as some G[Ci U Yi] (to be defined).
4. Find a k-leaf root T of G – (C1 U Y1). If none exists, we are done.

Otherwise, look at how Ci U Yi is organized in T. By (3), C1 U Y1 allows
the same k-leaf root organization. We embed C1 U Y1 into T by
mimicking C2 U Y2. By (2), this works.

This is proved as follows:
1. Show that if a k-leaf root has degree > 𝑑, one can find subsets C1 U Y1,

…, Cd U Yd, such that Ci cuts Yi from the rest of G.
2. Moreover, C1 U C2 U … U Cd can be partitioned into layers that have the

same neighborhood in G – (C1 U Y1 U … U Cd U Yd).
3. If d is large, some G[Ci U Yi] and G[Cj U Yj] admit the same set of

encoded k-leaf roots (to be defined).
4. Find a k-leaf root T of G – (Ci U Yi). Look at how Cj U Yj is organized in

T. By (3), Ci U Yi allows the same k-leaf root organization. We embed
Ci U Yi into T by mimicking Cj U Yj. By (2), this works.

𝑘-leaf roots with high degree

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then
𝐺 contains a subset 𝐶 of vertices such that G is a 𝒌-leaf power if and only if
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘) if it exists.

• T = leaf root of G

• v = lowest max of degree >d

• z = closest leaf to v

• Ci = subtrees at distance <= k from v

• Layer j = leaves at distance j from v

• Of course, we don’t have 𝑇. Still, by brute-force we can find
the 𝐶𝑖’s and 𝑌𝑖’s that satisfy the cutset, size and layering
properties. This is feasible since the 𝐶𝑖’s have bounded size.

• Of course, we don’t have 𝑇. Still, by brute-force we can find
the 𝐶𝑖’s and 𝑌𝑖’s that satisfy the cutset, size and layering
properties. This is feasible since the 𝐶𝑖’s have bounded size.

• Of course, we don’t have 𝑇. Still, by brute-force we can find
the 𝐶𝑖’s and 𝑌𝑖’s that satisfy the cutset, size and layering
properties. This is feasible since the 𝐶𝑖’s have bounded size.

• Look at the k-leaf roots of each G[Ci U Yi].

• WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set
of layer-encoded k-leaf roots.

• WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set
of layer-encoded k-leaf roots.

