RECONSTRUCTING PHYLOGENIES FROM ORDINAL DISTANCE INFORMATION

Manuel Lafond, Université de Sherbrooke, Canada

Additive distances

	а	b	С	d	е
а	0	1.5	3	4.5	3.5
b	1.5	0	3.5	5	4
С	3	3.5	0	2.5	1.5
d	4.5	5	2.5	0	3
е	3.5	4	1.5	3	0

Additive distances

	а	b	С	d	е
а	0	1.5	3	4.5	3.5
b	1.5	0	3.5	5	4
С	3	3.5	0	2.5	1.5
d	4.5	5	2.5	0	3
е	3.5	4	1.5	3	0

	а	b	С	d	е
а	0	1.8	2.7	3.9	3.5
b	1.8	0	4.1	5.5	4.2
С	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
е	3.5	4.2	1.7	3	0

Want: a tree that faithfully represents these distances.

What does "faithfully" mean?

	а	b	С	d	е
а	0	1.8	2.7	3.9	3.5
b	1.8	0	4.1	5.5	4.2
С	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
е	3.5	4.2	1.7	3	0

	а	b	С	d	е
а	0	1.8	2.7	3.9	3.5
b	1.8	0	4.1	5.5	4.2
С	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
е	3.5	4.2	1.7	3	0

In the tree, a should have **b** as its closest taxon, **c** as its second closest, **e** third, **d** fourth

	а	b	С	d	е
а	0	1	2	4	3
b	1.8	0	4.1	5.5	4.2
С	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
е	3.5	4.2	1.7	3	0

In the tree, a should have b as its closest taxon, c as its second closest, e third, d fourth

	а	b	С	d	е
а	0	1	2	4	3
b	1.8	0	4.1	5.5	4.2
С	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
е	3.5	4.2	1.7	3	0

Replace elements of the row by their rank. Do this for every row.

	а	b	С	d	е
а	0	1	2	4	3
b	1	0	2	4	3
С	3	4	0	2	1
d	3	4	1	0	2
е	3	4	1	2	0

Replace elements of the row by their rank. Do this for every row.

	а	b	С	d	е
а	0	1	2	4	3
b	1	0	2	4	3
С	3	4	0	2	1
d	3	4	1	0	2
е	3	4	1	2	0

The Ranked Distance Phylogeny problem Given: ranking matrix *R*. Find: an edge-weighted tree *T* that *realizes* these rankings.

	а	b	С	d	е
а	0	1	2	4	3
b	1	0	2	4	3
С	3	4	0	2	1
d	3	4	1	0	2
е	3	4	1	2	0

The Ranked Distance Phylogeny problem Given: ranking matrix *R*.

Find: an edge-weighted tree *T* that *realizes* these rankings. For each *x*, *y*, *z*, $R[x, y] < R[x, z] \Rightarrow dist_T(x, y) < dist_T(x, z)$

	а	b	С	d	е
а	0	1	2	4	3
b	1	0	2	4	3
С	3	4	0	2	1
d	3	4	1	0	2
е	3	4	1	2	0

The Ranked Distance Phylogeny problem

Given: ranking matrix *R*.

Find: an edge-weighted tree *T* that *realizes* these rankings.

For each $x, y, z, R[x, y] < R[x, z] \Rightarrow dist_T(x, y) < dist_T(x, z)$

Related work

- Given distance *D*, compute a new distance *D'* where
 D'(*x*, *y*) = # of disagreements in ranking others (inversions)
- For which *D* is *D*' tree-like?
 - [Bonnot, Guénoche, Perrier, Ordinal and Symb. Analysis, 1996]
 - [Guénoche, J of Classification, 1997]
 - [Guénoche, *Discrete Mathematics*, 1998]
 - [Moulton & Spillner, Order, 2022]

Related work

- Ranked Distance Phylogeny Problem
 - [Kannan & Warnow, *WADS*, 1993] (triangle total orders)
 - [Kearney, *JCB*, 1997] (mandatory splits from ranks)
 - [Kearney, *RECOMB*, 1998] (extract quartets from ranks)
 - [Kearney, Hayward, Meijer, *Algorithmica*, 1999] (total order on D)
 - [Shah & Farach-Colton, *J of Classification*, 2006] (total order is NP-hard)

Related work

- Ranked Distance Phylogeny Problem
 - [Kannan & Warnow, *WADS*, 1993] (triangle total orders)
 - [Kearney, *JCB*, 1997] (mandatory splits from ranks)
 - [Kearney, *RECOMB*, 1998] (extract quartets from ranks)
 - [Kearney, Hayward, Meijer, *Algorithmica*, 1999] (total order on D)
 - [Shah & Farach-Colton, *J of Classification*, 2006] (total order is NP-hard)

	а	b	С	d	е
а	0	1	2	4	3
b	1	0	2	4	3
С	3	4	0	2	1
d	3	4	1	0	2
е	3	4	1	2	0

	а	b	С	d	е
а		1	2		
b		0	2		
С		4	0		
d		4	1		
е		4	1		

	а	b	С	d	е
а		1	2		
b		0	2		
С		4	0		
d		4	1		
е		4	1		

According to columns *b* and *c*, there are two types of taxa:

- those who prefer $b \{a, b\}$
- those who prefer *c* {*c*, *d*, *e*}

According to columns *b* and *c*, there are two types of taxa:

- those who prefer $b \{a, b\}$
- those who prefer *c* {*c*, *d*, *e*}

Can be proved: if a tree realizes *R*, it contains the split *ab*|*cde*

According to columns *b* and *c*, there are two types of taxa:

- those who prefer $b \{a, b\}$
- those who prefer *c* {*c*, *d*, *e*}

Can be proved: if a tree realizes *R*, it contains the split *ab*|*cde*

	а	b	С	d	е
а		1	2		
b		0	2		
С		4	0		
d		4	1		
е		4	1		

Proposition: for any *u*, *v*, let $S_{uv} = \{s : R(s, u) < R(s, v)\}$. If a tree *T* realizes *R*, then it contains the split $S_{uv}|X - S_{uv}$ (where *X* is the set of taxa).

Proposition: for any *u*, *v*, let $S_{uv} = \{s : R(s, u) < R(s, v)\}$. If a tree *T* realizes *R*, then it contains the split $S_{uv}|X - S_{uv}$ (where *X* is the set of taxa).

	а	b	С	d	е
а	0	1			
b	1	0			
С	3	4			
d	3	4			
е	3	4			

acde|b

Proposition: for any *u*, *v*, let $S_{uv} = \{s : R(s, u) < R(s, v)\}$. If a tree *T* realizes *R*, then it contains the split $S_{uv}|X - S_{uv}$ (where *X* is the set of taxa).

Algorithm

- Compute all the mandatory splits $S_{uv}|X S_{uv}|$
- Find the tree *T* for this split system (if it exists)
- Find the edge weights to realize R using a LP.

Conjecture [Kearney, 1995]

If R is realizable, then this algorithm finds a tree that realizes R.

Algorithm

- Compute all the mandatory splits $S_{uv}|X S_{uv}|$
- Find the tree *T* for this split system (if it exists)
- Find the edge weights to realize R using a LP.

Conjecture [Kearney, 1995]

If R is realizable, then this algorithm finds a tree that realizes R.

Even if false, still useful to build a "backbone tree".

Algorithm

- Compute all the mandatory splits $S_{uv}|X S_{uv}|$
- Find the tree *T* for this split system (if it exists)
- Find the edge weights to realize R using a LP.
 - OPEN : algorithm for edge weights without LP

Conjecture [Kearney, 1995]

If R is realizable, then this algorithm finds a tree that realizes R.

Even if false, still useful to build a "backbone tree".

<u>The Ranked Distance Phylogeny problem</u> Given: ranking matrix *R*. **Find**: an edge-weighted tree *T* that satisfies these rankings. For each *x*, *y*, *z*, $R[x, y] < R[x, z] \Rightarrow dist_T(x, y) < dist_T(x, z)$

This definition allows ties in the rankings. Equality = don't care

	а	b	С	d	е
а	0	1.8	1.7	3.9	3.5
b	1.8	0	5.3	5.5	5.4
С	1.7	5.3	0	2.5	1.7
d	3.9	5.5	2.5	0	3
е	3.5	5.4	1.7	3	0

<u>The Ranked Distance Phylogeny problem</u> Given: ranking matrix *R*. **Find**: an edge-weighted tree *T* that satisfies these rankings. For each *x*, *y*, *z*, $R[x, y] < R[x, z] \Rightarrow dist_T(x, y) < dist_T(x, z)$

This definition allows ties in the rankings. Equality = don't care

	а	b	С	d	е
а	0	1.8	1.7	3.9	3.5
b	1.8	0	5.3	5.5	5.4
С	1.7	5.3	0	2.5	1.7
d	3.9	5.5	2.5	0	3
е	3.5	5.4	1.7	3	0

	а	b	С	d	е
а	0	1	1	2	2
b	1	0	2	2	2
С	1	3	0	2	1
d	3	4	1	0	2
е	2	3	1	2	0

Conjecture

If *R* allows ties (don't cares), then it is NP-hard to decide whether *R* is realizable.

	а	b	С	d	е
а	0	1	1	2	2
b	1	0	2	2	2
С	1	3	0	2	1
d	3	4	1	0	2
е	2	3	1	2	0

	а	b	С	d
а	0	1	0	1
b	1	0	1	0
С	0	1	0	0
d	1	0	0	0

	а	b	С	d
а	0	1	0	1
b	1	0	1	0
С	0	1	0	0
d	1	0	0	0

	а	b	С	d
а	0	1	0	1
b	1	0	1	0
С	0	1	0	0
d	1	0	0	0

	а	b	С	d
а	0	1	0	1
b	1	0	1	0
С	0	1	0	0
d	1	0	0	0

G(R)

Theorem

If *R* is binary and symmetric, then *R* is realizable if and only if **the** complement of G(R) is a *k*-leaf power for some *k*.

Definition (Nishimura et al., 2002)

A graph *G* is a *k*-leaf power if there exist a tree *T* such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

Definition (Nishimura, 2002)

A graph *G* is a k-leaf power if there exist a tree *T* such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u,v) \leq k$

Theorem

If *R* is binary and symmetric, then *R* is realizable if and only if the complement of G(R) is a k-leaf power for some k.

R is binary and symmetric.

- Equivalent to recognizing leaf powers.
- Complexity open since 2002.
- For fixed k, can decide if a graph G is a k-leaf power in time $O(n^{f(k)})$ [L, SODA2022]
- In general, complexity open.

	а	b	С	d
а	0	1	0	1
b	1	0	0	0
С	0	1	0	1
d	0	1	0	0

Nothing known...

Some open problems

•

- <u>Problem 1</u>: when each row is a total order, are the mandatory splits sufficient?
- **<u>Problem 1.1</u>**: infer edge weights on given tree without LP.
- **Problem 2** : when ties are allowed, is realizability NP-hard?
- **Problem 3** : complexity of recognizing binary symmetric *R*, aka leaf powers.
- **<u>Problem 4</u>** : characterize binary *R* that may be non-symmetric.