RECONSTRUCTING PHYLOGENIES FROM ORDINAL DISTANCE INFORMATION

Manuel Lafond, Université de Sherbrooke, Canada

m
UNIVERSITÉ DE
SHERBROOKE

Additive distances

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1.5	3	4.5	3.5
\mathbf{b}	1.5	0	3.5	5	4
\mathbf{c}	3	3.5	0	2.5	1.5
d	4.5	5	2.5	0	3
e	3.5	4	1.5	3	0

Additive distances

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1.5	3	4.5	3.5
\mathbf{b}	1.5	0	3.5	5	4
\mathbf{c}	3	3.5	0	2.5	1.5
\mathbf{d}	4.5	5	2.5	0	3
\mathbf{e}	3.5	4	1.5	3	0

NOT Additive

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1.8	2.7	3.9	3.5
\mathbf{b}	1.8	0	4.1	5.5	4.2
\mathbf{c}	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
\mathbf{e}	3.5	4.2	1.7	3	0

Want: a tree that faithfully represents these distances.
What does "faithfully" mean?

NOT Additive

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1.8	2.7	3.9	3.5
\mathbf{b}	1.8	0	4.1	5.5	4.2
\mathbf{c}	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
\mathbf{e}	3.5	4.2	1.7	3	0

The exact distance values are unreliable.
However, their relative ordering should be informative.

NOT Additive

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1.8	2.7	3.9	3.5
\mathbf{b}	1.8	0	4.1	5.5	4.2
\mathbf{c}	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
\mathbf{e}	3.5	4.2	1.7	3	0

> In the tree, a should have \mathbf{b} as its closest taxon, \mathbf{c} as its second closest, \mathbf{e} third, d fourth

The exact distance values are unreliable.
However, their relative ordering should be informative.

NOT Additive

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1	2	4	3
\mathbf{b}	1.8	0	4.1	5.5	4.2
\mathbf{c}	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
\mathbf{e}	3.5	4.2	1.7	3	0

In the tree, a should have b as its closest taxon, c as its second closest, e third, d fourth

The exact distance values are unreliable.
However, their relative ordering should be informative.

NOT Additive

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1	2	4	3
\mathbf{b}	1.8	0	4.1	5.5	4.2
c	2.7	4.1	0	2.5	1.7
d	3.9	5.5	2.5	0	3
e	3.5	4.2	1.7	3	0

Replace elements of the row by their rank. Do this for every row.

The exact distance values are unreliable.
However, their relative ordering should be informative.

Ranking matrices

	a	b	c	d	e
a	0	1	2	4	3
b	1	0	2	4	3
c	3	4	0	2	1
d	3	4	1	0	2
e	3	4	1	2	0

Replace elements of the row by their rank. Do this for every row.

The exact distance values are unreliable.
However, their relative ordering should be informative.

Ranking matrices

	a	b	c	d	e
a	0	1	2	4	3
b	1	0	2	4	3
c	3	4	0	2	1
d	3	4	1	0	2
e	3	4	1	2	0

The Ranked Distance Phylogeny problem
Given: ranking matrix R.
Find: an edge-weighted tree T that realizes these rankings.

Ranking matrices

	a	b	c	d	e
a	0	1	2	4	3
b	1	0	2	4	3
c	3	4	0	2	1
d	3	4	1	0	2
e	3	4	1	2	0

The Ranked Distance Phylogeny problem
Given: ranking matrix R.
Find: an edge-weighted tree T that realizes these rankings.
For each $x, y, z, R[x, y]<R[x, z] \Rightarrow \operatorname{dist}_{T}(x, y)<\operatorname{dist}_{T}(x, z)$

Ranking matrices

	a	b	c	d	e
a	0	1	2	4	3
\mathbf{b}	1	0	2	4	3
c	3	4	0	2	1
d	3	4	1	0	2
e	3	4	1	2	0

The Ranked Distance Phylogeny problem
Given: ranking matrix R.
Find: an edge-weighted tree T that realizes these rankings.
For each $x, y, z, R[x, y]<R[x, z] \Rightarrow \operatorname{dist}_{T}(x, y)<\operatorname{dist}_{T}(x, z)$

Related work

- Given distance D, compute a new distance D^{\prime} where
$D^{\prime}(x, y)=\#$ of disagreements in ranking others (inversions)
- For which D is D^{\prime} tree-like?
- [Bonnot, Guénoche, Perrier, Ordinal and Symb. Analysis, 1996]
- [Guénoche, J of Classification, 1997]
- [Guénoche, Discrete Mathematics, 1998]
- [Moulton \& Spillner, Order, 2022]

Related work

- Ranked Distance Phylogeny Problem
- [Kannan \& Warnow, WADS, 1993] (triangle total orders)
- [Kearney, JCB, 1997] (mandatory splits from ranks)
- [Kearney, RECOMB, 1998] (extract quartets from ranks)
- [Kearney, Hayward, Meijer, Algorithmica, 1999] (total order on D)
- [Shah \& Farach-Colton, J of Classification, 2006] (total order is NP-hard)

Related work

- Ranked Distance Phylogeny Problem
- [Kannan \& Warnow, WADS, 1993] (triangle total orders)
- [Kearney, JCB, 1997] (mandatory splits from ranks)
- [Kearney, RECOMB, 1998] (extract quartets from ranks)
- [Kearney, Hayward, Meijer, Algorithmica, 1999] (total order on D)
- [Shah \& Farach-Colton, J of Classification, 2006] (total order is NP-hard)

	a	b	c	d	e
a	0	1	2	4	3
\mathbf{b}	1	0	2	4	3
\mathbf{c}	3	4	0	2	1
d	3	4	1	0	2
e	3	4	1	2	0

	a	b	c	d	e
a		1	2		
b		0	2		
c		4	0		
d		4	1		
e		4	1		

	a	b	c	d	e
a		1	2		
b		0	2		
c		4	0		
d		4	1		
e		4	1		

According to columns b and c, there are two types of taxa:

- those who prefer $b\{a, b\}$
- those who prefer $c\{c, d, e\}$

	a	b	c	d	e
a		1	2		
b		0	2		
c		4	0		
d		4	1		
e		4	1		

According to columns b and c, there are two types of taxa:

- those who prefer $b\{a, b\}$
- those who prefer $c\{c, d, e\}$

Can be proved: if a tree realizes R, it contains the split $a b \mid c d e$

	a	b	c	d	e
a		1	2		
b		0	2		
c		4	0		
d		4	1		
e		4	1		

According to columns b and c, there are two types of taxa:

- those who prefer $b\{a, b\}$
- those who prefer $c\{c, d, e\}$

Can be proved: if a tree realizes R, it contains the split $a b \mid c d e$

	a	b	c	d	e
a		1	2		
b		0	2		
c		4	0		
d		4	1		
e		4	1		

Proposition: for any u, v, let $S_{u v}=\{s: R(s, u)<R(s, v)\}$. If a tree T realizes R, then it contains the split $S_{u v} \mid X-S_{u v}$ (where X is the set of taxa).

	a	b	c	d	e
a	0	1	2	4	3
\mathbf{b}	1	0	2	4	3
c	3	4	0	2	1
d	3	4	1	0	2
\mathbf{e}	3	4	1	2	0

Proposition: for any u, v, let $S_{u v}=\{s: R(s, u)<R(s, v)\}$. If a tree T realizes R, then it contains the split $S_{u v} \mid X-S_{u v}$ (where X is the set of taxa).

	a	b	c	d	e
\mathbf{a}	0	1			
\mathbf{b}	1	0			
c	3	4			
d	3	4			
\mathbf{e}	3	4			

acde|b

Proposition: for any u, v, let $S_{u v}=\{s: R(s, u)<R(s, v)\}$. If a tree T realizes R, then it contains the split $S_{u v} \mid X-S_{u v}$ (where X is the set of taxa).

Algorithm

- Compute all the mandatory splits $S_{u v} \mid X-S_{u v}$
- Find the tree T for this split system (if it exists)
- Find the edge weights to realize R using a LP.

Conjecture [Kearney, 1995]
If R is realizable, then this algorithm finds a tree that realizes R.

Algorithm

- Compute all the mandatory splits $S_{u v} \mid X-S_{u v}$
- Find the tree T for this split system (if it exists)
- Find the edge weights to realize R using a LP.

Conjecture [Kearney, 1995]
If R is realizable, then this algorithm finds a tree that realizes R.

Even if false, still useful to build a "backbone tree".

Algorithm

- Compute all the mandatory splits $S_{u v} \mid X-S_{u v}$
- Find the tree T for this split system (if it exists)
- Find the edge weights to realize R using a LP.
- OPEN : algorithm for edge weights without LP

Conjecture [Kearney, 1995]
If R is realizable, then this algorithm finds a tree that realizes R.

Even if false, still useful to build a "backbone tree".

The Ranked Distance Phylogeny problem

Given: ranking matrix R.
Find: an edge-weighted tree T that satisfies these rankings.
For each $x, y, z, R[x, y]<R[x, z] \Rightarrow \operatorname{dist}_{T}(x, y)<\operatorname{dist}_{T}(x, z)$
This definition allows ties in the rankings.
Equality $=$ don't care

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1.8	1.7	3.9	3.5
\mathbf{b}	1.8	0	5.3	5.5	5.4
\mathbf{c}	1.7	5.3	0	2.5	1.7
\mathbf{d}	3.9	5.5	2.5	0	3
\mathbf{e}	3.5	5.4	1.7	3	0

The Ranked Distance Phylogeny problem

Given: ranking matrix R.
Find: an edge-weighted tree T that satisfies these rankings.
For each $x, y, z, R[x, y]<R[x, z] \Rightarrow \operatorname{dist}_{T}(x, y)<\operatorname{dist}_{T}(x, z)$
This definition allows ties in the rankings.
Equality $=$ don't care

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1.8	1.7	3.9	3.5
\mathbf{b}	1.8	0	5.3	5.5	5.4
\mathbf{c}	1.7	5.3	0	2.5	1.7
\mathbf{d}	3.9	5.5	2.5	0	3
\mathbf{e}	3.5	5.4	1.7	3	0

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1	1	2	2
\mathbf{b}	1	0	2	2	2
\mathbf{c}	1	3	0	2	1
d	3	4	1	0	2
\mathbf{e}	2	3	1	2	0

Conjecture

If R allows ties (don't cares), then it is NP-hard to decide whether R is realizable.

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	0	1	1	2	2
\mathbf{b}	1	0	2	2	2
\mathbf{c}	1	3	0	2	1
\mathbf{d}	3	4	1	0	2
\mathbf{e}	2	3	1	2	0

Variant: R is binary and symmetric.

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	1	0	1
\mathbf{b}	1	0	1	0
\mathbf{c}	0	1	0	0
\mathbf{d}	1	0	0	0

Variant: R is binary and symmetric.

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	1	0	1
\mathbf{b}	1	0	1	0
\mathbf{c}	0	1	0	0
\mathbf{d}	1	0	0	0

Variant: R is binary and symmetric.

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	1	0	1
\mathbf{b}	1	0	1	0
\mathbf{c}	0	1	0	0
\mathbf{d}	1	0	0	0

Variant: R is binary and symmetric.

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	1	0	1
\mathbf{b}	1	0	1	0
\mathbf{c}	0	1	0	0
\mathbf{d}	1	0	0	0

Variant: R is binary and symmetric.

	a	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	1	0	1
\mathbf{b}	1	0	1	0
\mathbf{c}	0	1	0	0
\mathbf{d}	1	0	0	0

Theorem

If R is binary and symmetric, then R is realizable if and only if the complement of $\boldsymbol{G}(\boldsymbol{R})$ is a \boldsymbol{k}-leaf power for some \boldsymbol{k}.

Definition (Nishimura et al., 2002)

A graph G is a k-leaf power if there exist a tree T such that:

- $L(T)=V(G)$, where $L(T)$ is the set of leaves of T
- $u v \in E(G) \Leftrightarrow \operatorname{dist}_{T}(u, v) \leq k$

G

T

$$
k=4
$$

Variant: R is binary and symmetric.

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	1	0	1
\mathbf{b}	1	0	1	0
\mathbf{c}	0	1	0	0
\mathbf{d}	1	0	0	0

$G(R)$

Definition (Nishimura, 2002)

A graph G is a k-leaf power if there exist a tree T such that:

- $L(T)=V(G)$, where $L(T)$ is the set of leaves of T
- $u v \in E(G) \Leftrightarrow \operatorname{dist}_{T}(u, v) \leq k$

Theorem

If R is binary and symmetric, then R is realizable if and only if the complement of $G(R)$ is a k-leaf power for some k.
R is binary and symmetric.

- Equivalent to recognizing leaf powers.
- Complexity open since 2002.
- For fixed k, can decide if a graph G is a k-leaf power in time $O\left(n^{f(k)}\right) \quad$ [L, SODA2022]
- In general, complexity open.

Variant: R is binary but not symmetric.

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	1	0	1
\mathbf{b}	1	0	0	0
\mathbf{c}	0	1	0	1
\mathbf{d}	0	1	0	0

Nothing known...

Some open problems

- Problem 1 : when each row is a total order, are the mandatory splits sufficient?
- Problem 1.1: infer edge weights on given tree without LP.
- Problem 2 : when ties are allowed, is realizability NP-hard?
- Problem 3 : complexity of recognizing binary symmetric R, aka leaf powers.
- Problem 4 : characterize binary R that may be nonsymmetric.
- ...

