The Complexity of Speedrunning Video Games Manuel Lafond U of Ottawa/U of Sherbrooke

Speedrunning

- No time to play video games anymore...
- => Just watch people play then.

Speedrunning

- No time to play video games anymore...
- => Just watch people play then.
- Sounds boring?

Speedrunning

- No time to play video games anymore...
- => Just watch people play then.
- Sounds boring?
- => Speedrunning makes it interesting.

Speedrunning

- Goal: finish a game as fast as possible.
- Very competitive field, but also very collaborative.
- Standard speedrunning techniques developed over the years.
- In this talk:
- Part 1: damage boosting
- Part 2: routing stages
- Lead to algorithmic problems.
- Damage boosting => generalization of knapsack
- Routing stages => generalization of feedback arc set

Damage boosting

(incorporation of multimedia content!)

Some related work

- For many games played by speedrunners, it is NP-hard/PSPACE-hard to decide if the game can be completed AT ALL...
- Lemmings [Cormore, 2004]
- Super Mario Bros, Donkey Kong Country, Zelda [Aloupis \& al., 2015]
- Many, many more: meta-theorems of [Viglietta, 2014]
- Mario Kart problem: can a given course be finished in k seconds? [Bosboom \& al., 2015]

Some related work

- Speedrunners often measure time gained w.r.t « normal play». - e.g. save 40 seconds by damage-boosting on the bat.
- In this work, a game is a set or a sequence of time-gaining events (opportunities to gain time that can be taken or not).
- Goal: maximize total time-gain on these events.
- This formulation avoids problem of unfinishable games.
- Approximation algorithms
- Fixed-parameter tractability

Damage boosting

Damage boosting through a stage

Start with 10 HP

Lose 4 HP
Gain 10 secs

Lose 8 HP
Gain 25 secs

Lose 5 HP
Gain 12 secs

Damage boosting through a stage

Start with 10 HP

Lose 4 HP		Lose 8 HP
Gain 10 secs	6 HP	Gain 25 secs

Lose 5 HP
Gain 12 secs

\longrightarrow GOAL

Damage boosting through a stage

Start with 10 HP
Lose 4 HP
Gain 10 secs
6 HP Gain 25 secs $6 \mathbf{H P}$
Lose 5 HP
Gain 12 secs

Damage boosting through a stage

Start with 10 HP
Lose 4 HP
Gain 10 secs
6 HP
Lose 8 HP
Gain 25 -secs 6 HP
Lose 5 HP
Gain 12 secs 1 HP

Damage boosting through a stage

Start with 10 HP
Lose 4 HP
Gain 10 secs
6 HP Gain 25 -secs $6 \mathbf{H P}$
Lose 5 HP
Gain 12 secs
1 HP
GOAL
ined 22 secs

Damage boosting through a stage

Start with 10 HP

Lose 8 HP
Gain 25 secs

Lose 5 HP
Gain 12 secs
2 HP
Gain 10 -secs
Gain 12 secs

Mun

\longrightarrow GOAL
Gained 25 secs

Damage boosting through a stage

Note: this is the knapsack problem.
Maximize time gains without spending more than max HP =
Maximize value of items while staying under maximum weight.

Chicken events

Chicken events

The Damage Boosting problem

- Given: a sequence of events $S=\left(\left(h_{1}, t_{1}\right), \ldots,\left(h_{k}, t_{k}\right)\right)$ and starting hit points $h p$.
- h_{i} is the HP lost and t_{i} the time gained if event $\left(h_{i j} t_{i}\right)$ is taken.
- Both values are negative for chicken events.
- Find: a subsequence S^{\prime} of S of events to take such that
- The player $h p$ is always strictly above 0 .
- The sum of time gains is maximized.

The Damage Boosting problem

- Given: a sequence of events $S=\left(\left(h_{1}, t_{1}\right), \ldots,\left(h_{k}, t_{k}\right)\right)$ and starting hit points $h p$.
- h_{i} is the HP lost and t_{i} the time gained if event $\left(h_{i j} t_{i}\right)$ is taken.
- Both values are negative for chicken events.
- Find: a subsequence S^{\prime} of S of events to take such that
- The player $h p$ is always strictly above 0 .
- The sum of time gains is maximized.

A PTAS for damage boosting

- The polynomial-time approximation scheme (PTAS) for knapsack still works with minor modifications.
- Pseudo-polynomial dynamic programming algorithm running in time $O\left(n^{2} T\right) \quad n=$ number of events $T=$ max time gain
- Scale the time gains by $\varepsilon T / n$, run the DP algorithm, get a solution of value at least $(1-\varepsilon)$ OPT.

FPT of damage boosting

- In practice, the h_{i} 's should not take too many possible values:
- Each enemy does a fixed amount of damage, and a game usually has few enemy types.
- Knapsack is FPT in the number of distinct weight values present in the input.
- If k possible weights, can be solved in time $O\left(2^{2.5 k l o g ~ k} p o l y(n)\right)$.

FPT of damage boosting

- Question: if k is the number of possible damage values, is damage boosting FPT in k ?

FPT of damage boosting

- Question: if k is the number of possible damage values, is damage boosting FPT in k ?
- Answer: I don't know...
- FPT in $\boldsymbol{c}+\boldsymbol{k}$, where \boldsymbol{c} is the number of chicken events.
- $O\left(2 c(2 k(c+1)+c)^{2.5(2 k(c+1)+c) p o l y(n))}\right.$ algorithm.
- Involves ILP with $O(c+k)$ variables, using results of [Lokshtanov, 2009]

FPT of damage boosting

$\operatorname{maximize} \quad \sum_{i=1}^{k} \sum_{j=0}^{r} g_{i j}$
$k=$ number of distinct
damage values
$r=$ number of chicken events taken
subject to $\quad h_{j+1} \leq h_{j}-\sum_{i=1}^{k} x_{i j} d_{i}-d\left(c_{j+1}\right) \quad j \in\{0, \ldots, r-1\}$

$$
\begin{aligned}
& h_{j}=\text { HP remaining after } \\
& \text { taking j-th chicken }
\end{aligned}
$$

$x_{i j}=$ number of events of damage value d_{j} taken between chicken j and $j+1$ $g_{i j}=$ time gained from damage d_{i} events between chicken j and $j+1$

$$
h_{j} \leq h p
$$

$$
j \in\{1, \ldots, r\}
$$

$$
h_{j}-\sum_{i=1}^{k} x_{i j} d_{i}>0
$$

$$
j \in\{0, \ldots, r\}
$$

$$
g_{i j} \leq f_{i j}\left(x_{i j}\right)
$$

$$
i \in[k], j \in\{0, \ldots, r\}
$$

$$
h_{j} \in \mathbb{N}
$$

$$
j \in\{1, \ldots, r\}
$$

$$
x_{i j} \in\left\{0, \ldots, n_{i j}\right\}, g_{i j} \in \mathbb{N} \quad i \in[k], j \in\{0, \ldots, r\}
$$

Also in the paper

- Damage boosting with multiple lives.
- Allow HP to drop to 0 .
- Lose a life = respawn at last checkpoint with full HP
- Limited number of lives L
- Maximum time gain is hard to approximate within factor $1 / 2$
- Pseudo-polynomial time algorithm $O\left(n^{2}(\operatorname{maxHP})^{2} \mathrm{~L}\right)$.

Routing stages

Routing

Routing

The Stage Routing problem

- Given: a set of stages $S=\left\{S_{1}, \ldots, S_{k}\right\}$ in which the time to complete S_{i} depends on the weapons acquired from the stages completed before.
- Find: a completion order of S that maximizes time gain.

The Stage Routing problem

- Below: a stage is just a boss.
- Find a max-weight acyclic sub-digraph of indegree at most 1.
- Gives ordering + which weapons beats which boss.

The Stage Routing problem

- Below: a stage is just a boss.
- Find a max-weight acyclic sub-digraph of indegree at most 1.
- Gives ordering + which weapons beats which boss.
- Called an arborescence, found in time $O(|A|+n \log n)$ [Gabov \& al., 1986].

The Stage Routing problem

- Below: a stage is just a boss.
- Find a max-weight acyclic sub-digraph of indegree at most 1.
- Gives ordering + which weapons beats which boss.
- Called an arborescence, found in time $O(|A|+n \log n)$ [Gabov \& al., 1986].
- But a stage has many events, each with different time gains.

Multiple events in a stage

Have Magnet Weapon Save 10 secs

Have Rush Jet Save 20 secs

Multiple events in a stage

- A stage is a set of events, each with different possible gains.

STAGE $S_{1}=$	EVENT 1
If S_{2} cleared, save 10s	
If S_{3} cleared, save 5s	
If S_{4} cleared, save 12s	

EVENT 3

If S_{3} cleared, save 4s
If S_{5} cleared, save 8s

Multiple events in a stage

- A stage is a set of events, each with different possible gains.

Multiple events in a stage

- A stage is a set of events, each with different possible gains.

Multiple events in a stage

- Stage graph = collapse all events from the same stage.

Graph theoretic formulation

- Given: a directed graph with event vertices of out-degree 0 , and stage vertices of in-degree 0 .
- Find: a maximum-weight sub-digraph of in-degree at most 1 such that the stage graph is acyclic.

Graph theoretic formulation

- Given: a directed graph with event vertices of out-degree 0 , and stage vertices of in-degree 0 .
- Find: a maximum-weight sub-digraph of in-degree at most 1 such that the stage graph is acyclic.

Graph theoretic formulation

- Given: a directed graph with event vertices of out-degree 0 , and stage vertices of in-degree 0 .
- Find: a maximum-weight sub-digraph of in-degree at most 1 such that the stage graph is acyclic.

The Stage Routing problem

- NP-hard if stages have at most 3 events of in-degree 1 and stages have out-degree at most 2.
- Follows from results on feedback arc set.

The Stage Routing problem

- NP-hard if stages have at most 3 events of in-degree 1 and stages have out-degree at most 2.
- Follows from results on feedback arc set.
- Approximability
- Maximizing time gain admits a trivial $1 / 2$-approximation: try any ordering of S. This or its reverse gains time at least $1 / 2$ OPT.
- Minimizing the time gains not taken is harder:
- Hard to approximate within a ratio better than $O(\log n)$, even if the stage graph is a tree and only one stage has more than 1 event.

The Stage Routing problem

- Fixed-parameter tractability.
- W[2]-hard in the minimum time gains not taken.
- Cannot be FPT in the in-degree or out-degree of stage graph.
- Cannot be FPT in the treewidth of the stage graph (both unless $\mathrm{P}=\mathrm{NP}$).

The Stage Routing problem

- Fixed-parameter tractability.
- W[2]-hard in the minimum time gains not taken.
- Cannot be FPT in the in-degree or out-degree of stage graph.
- Cannot be FPT in the treewidth of the stage graph (both unless P=NP).
- FPT in $\boldsymbol{d}+\boldsymbol{t}$, where $\boldsymbol{d}=$ maximum in-degree and $t=$ treewidth
- Use a tree decomposition T with dynamic programming.
- Main idea: at each bag X of T, try every ordering of $N^{-}[X]$
- Simple DP algorithm yields $O((d t)!p o l y(n))$ algorithm.
- Can be improved to $O\left(2^{t(d \log d)+d}\right.$ poly(n)).

Conclusion

- A new framework to treat video games as optimization problems.
- Open problems:
- FPT status of damage boosting with chicken events.
- Approximability of damage boosting with lives.
- Good algorithms for routing stages?
- Other speedrunning mechanics.

Conclusion

- A new framework to treat video games as optimization problems.
- Open problems:
- FPT status of damage boosting with chicken events.
- Approximability of damage boosting with lives.
- Good algorithms for routing stages?
- Other speedrunning mechanics:
- Random number generation manipulation
- Optimizing experience in role-playing games (e.g. Final Fantasy)

Damage boosting with lives

Damage boosting with lives

- Dying also refills health!
- (it only costs you your life)

Damage boosting with lives

- Death edges.
- Can only be taken if hp < 0 after taking event.
- Restart at last checkpoint event.
- Refill health to 100%.
- Incur a time penalty p_{i}.
- Limited number L of lives (can die at most $L-1$ times).

Damage boosting with lives

- Death edges.
- Can only be taken if hp < 0 after taking event.
- Restart at last checkpoint event.
- Refill health to 100%.
- Incur a time penalty p_{i}.
- Limited number L of lives (can die at most $L-1$ times).

Damage boosting with lives

- Hard to approximate within a ratio $1 / 2$, even when $L=2$.
- If player has L lives, can approximate within a factor $1 / L-\varepsilon$.
- Trivial algorithm: do optimal with one life using PTAS.
- Can be solved in pseudo-polynomial time $O\left(n^{2}(\operatorname{maxHP})^{2} \mathrm{~L}\right)$.

