Even better fixed-parameter algorithms for bicluster editing Manuel Lafond

Bicluster editing

- Given: bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$
- Goal : add/remove a minimum number of edges so that every connected component is a bicluster (a complete bipartite graph).

Bicluster editing

- Given: bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$
- Goal : add/remove a minimum number of edges so that every connected component is a bicluster (a complete bipartite graph).

Some applications

- Gene expression analysis
- Social network analysis
- Phylogenetic analysis

Previous work

- NP-hard on subcubic graphs [Drange \& al, 2015]
- (actually ETH-hard)
- $O^{*}\left(4^{k}\right)$ time FPT algorithm [Protti \& al., 2006]

Previous work

- NP-hard on subcubic graphs [Drange \& al, 2015]
- (actually ETH-hard)
$O^{*}\left(4^{k}\right)$ time FPT algorithm [Protti \& al., 2006]
- Kernel of $4 k^{2}+6 k$ vertices

Previous work

- NP-hard on subcubic graphs [Drange \& al, 2015]
- (actually ETH-hard)
$O^{*}\left(4^{k}\right)$ time FPT algorithm [Protti \& al., 2006]
- Kernel of $4 k^{2}+6 k$ vertices
$O^{*}\left(3.24^{k}\right)$ time FPT algorithm [Guo \& al., 2008]

Previous work

- NP-hard on subcubic graphs [Drange \& al, 2015]
- (actually ETH-hard)
$O^{*}\left(4^{k}\right)$ time FPT algorithm [Protti \& al., 2006]
- Kernel of $4 k^{2}+6 k$ vertices
$O^{*}\left(3.24^{k}\right)$ time FPT algorithm [Guo \& al., 2008]
- Kernel of $4 k$ vertices (inaccuracy)
- More likely $6 k$, but remains to be proved

In this work

- $O^{*}\left(2.695^{k}\right)$ time FPT algorithm
- Simple branching algorithm
- Kernel of $5 k$ vertices

$O^{*}\left(2.695^{k}\right)$ time algorithm

- Focus on u, v on the same side that are conflicting:
- $N(u) \cap N(v) \neq \varnothing$
- $N(u) \neq N(v)$

$O^{*}\left(2.695^{k}\right)$ time algorithm

- Focus on u, v on the same side that are conflicting:
- $N(u) \cap N(v) \neq \varnothing$
- $N(u) \neq N(v)$
- Either u, v in the same bicluster, or not.
- Both choices induce some cost.

$O^{*}\left(2.695^{k}\right)$ time algorithm

- Put u, v in same bicluster
- Each node in $N(u) \Delta N(v)$ requires an insertion or deletion.
- $2^{|N(u) \Delta N(v)|}$ ways, each requiring $|N(u) \Delta N(v)|$ edits.

$O^{*}\left(2.695^{k}\right)$ time algorithm

- Put u, v in different bicluster
- Each node in $N(u) \cap N(v)$ requires a deletion.
- $2^{|N(u) \cap N(v)|}$ ways, each requiring $|N(u) \cap N(v)|$ edits.
function biclusterize (G, k)
if $k<0$ then Report "NO" and return
Remove from G all bicluster connected components (Rule 1)
if G has no vertex then Report "YES" and return
if G has maximum degree 2 then Solve G in polynomial time
Let $u, v \in V(G)$ such that $N(u) \cap N(v) \neq \emptyset$ and $N(u) \triangle N(v) \neq \emptyset$
Let R_{u} be the twin class of u and R_{v} be the twin class of v
/*Put u, v in the same bicluster*/
for each subset Z of $N(u) \triangle N(v)$ do
Obtain G^{\prime} from G by:
inserting all missing edges between $R_{u} \cup R_{v}$ and Z and deleting all edges between $R_{u} \cup R_{v}$ and $(N(u) \triangle N(v)) \backslash Z$
Let h be the number of edges modified from G to G^{\prime}
biclusterize $\left(G^{\prime}, k-h\right)$
end
/*Put u, v in different biclusters*/
for each subset Z of $N(u) \cap N(v)$ do
Obtain G^{\prime} from G by:
deleting all edges between R_{u} and $(N(u) \cap N(v)) \backslash Z$ and deleting all edges between R_{v} and Z
Let h be the number of edges modified from G to G^{\prime}
biclusterize $\left(G^{\prime}, k-h\right)$
end
if some recursive call reported "YES" then report "YES"
else report "NO"
- Let $c=N(u) \cap N(v)$ and $d=N(u) \Delta N(v)$
- Branching recurrence

$$
f(k)=2^{c} f(k-c)+2^{d} f(k-d)
$$

- Let $c=N(u) \cap N(v)$ and $d=N(u) \Delta N(v)$
- Branching recurrence

$$
f(k)=2^{c} f(k-c)+2^{d} f(k-d)
$$

- Lemma: for fixed c, the lower d is, the worse the complexity (and vice-versa).
- Let $c=N(u) \cap N(v)$ and $d=N(u) \Delta N(v)$
- Branching recurrence

$$
f(k)=2^{c} f(k-c)+2^{d} f(k-d)
$$

- Lemma: for fixed c, the lower d is, the worse the complexity (and vice-versa).
- Lemma: worst case occurs when $c=d=1$.
- Lemma: worst case occurs when $c=d=1$.
- This worst case occurs only if all conflicting pairs u, v have degrees 1 and 2.
- If so, problemn is easy (handle cycles and paths)
- Lemma: worst case occurs when $c=d=1$.
- This worst case occurs only if all conflicting pairs u, v have degrees 1 and 2.
- If so, problemn is easy (handle cycles and paths)
- We may assume that there is a conflicting pair u, v in which $\operatorname{deg}(u) \geq 3$.
- Worst case is $c=2, d=1$ or $c=1, d=2$
- Lemma: worst case occurs when $c=d=1$.
- This worst case occurs only if all conflicting pairs u, v have degrees 1 and 2.
- If so, problemn is easy (handle cycles and paths)
- We may assume that there is a conflicting pair u, v in which $\operatorname{deg}(u) \geq 3$.
- Worst case is $c=2, d=1$ or $c=1, d=2$
- Worst case recurrence:

$$
f(k)=2^{1} f(k-1)+2^{2} f(k-2)
$$

- Lemma: worst case occurs when $c=d=1$.
- This worst case occurs only if all conflicting pairs u, v have degrees 1 and 2.
- If so, problemn is easy (handle cycles and paths)
- We may assume that there is a conflicting pair u, v in which $\operatorname{deg}(u) \geq 3$.
- Worst case is $c=2, d=1$ or $c=1, d=2$
- Worst case recurrence:

$$
f(k)=2^{1} f(k-1)+2^{2} f(k-2)
$$

- branching factor $3.237=>O^{*}\left(3.237^{k}\right)$ time algorithm
- $O^{*}\left(3.237^{k}\right)$ time algorithm
- Actually the same as in [Guo \& al., 2008]
- Theorem: if G has a vertex of degree 1 , then one can attain branching factor 2.066 .
- Theorem: if G has no vertex of degree 1 , then the branching factor of the main algorithm is 2.695.
- Assuming it uses degree 1 special branching if a degree 1 vertex apears in a recursion.
- Theorem: if G has no vertex of degree 1 , then the branching factor of the main algorithm is 2.695 .
- Assuming it uses degree 1 special branching if a degree 1 vertex apears in a recursion.
- $=>O^{*}\left(2.695^{k}\right)$ time algorithm

Theorem: BICLUSTER EDITING admits a kernel of size 5k.

Kernel of size $5 k$

- Rule 1 : if a connected component X of G is a bicluster, remove X from G.

Kernel of size $5 k$

- Rule 2 : if there is a set of twins R such that $|R|>|N(N(R)) \backslash R|$, remove any vertex from R.
- twins $=$ on same side, have same neighbors

Kernel of size $5 k$

- Rule 1 : if a connected component X of G is a bicluster, remove X from G.
- Rule 2 : if there is a set of twins R such that $|R|>|N(N(R)) \backslash R|$, remove any vertex from R.
- twins = on same side, have same neighbors
- Rules from [Guo \& al., 2008]
- Claim : imply $4 k$ kernel

Kernel of size $5 k$

- Rule 1 : if a connected component X of G is a bicluster, remove X from G.
- Rule 2 : if there is a set of twins R such that
$|R|>|N(N(R)) \backslash R|$, remove any vertex from R.
- twins = on same side, have same neighbors
- Rules from [Guo \& al., 2008]
- Claim : imply $4 k$ kernel
- False : P_{6} cannot be reduced

Kernel of size $5 k$

- Defn : let R be twins. A vertex t is a sister of R if $N(t)=N(R) \cup\{u\}$ for some u, and t has no twins.

Kernel of size $5 k$

- Defn : let R be twins. A vertex t is a sister of R if $N(t)=N(R) \cup\{u\}$ for some u, and t has no twins.

Kernel of size $5 k$

- Defn : let R be twins. A vertex t is a sister of R if $N(t)=N(R) \cup\{u\}$ for some u, and t has no twins.
- Rule 3 : let R be twins and T its sisters. If $|R|>|N(N(R)) \backslash\{R \cup T\}|$, then remove any edge from $t \in T$ to its neighbor outside $N(R)$.

Kernel of size $5 k$

- Thm: Rules 1,2,3 are safe and lead to a kernel of size $5 k$.
- Read paper for proof idea.
- Open: true kernel size of Rules $1,2,3$?

Conclusion

- Better analysis $=$ better than $O^{*}\left(2.695^{k}\right)$?
- Better analysis $=$ better than $5 k$ kernel?
- Ideas applicable to Cluster editing?
- Existence of $O^{*}\left(2^{k}\right)$ algorithm or better?

