PERMUTATION-CONSTRAINED COMMON
STRING PARTITIONS WITH APPLICATIONS

Manuel Lafond Binhai Zhu

UNIVERSITE DE A MONTANA
SHERBROOKE STATE UNIVERSITY

D
In this talk

- Many genomic distances fit into a generic framework

- Permutation-Constrained String Partition (PCSP) solves
genomic distances

- PCSPis FPT in (k + d)

« k= # of blocks and d = max symbol occurrences
- => many genomic distances are FPT in (k + d)

Genomic distances

- Given : two strings S and T, a set of allowed operations P
- Find : a minimum sequence of P operations to turn Sinto T

Genomic distances

- Given : two strings S and T, a set of allowed operations P
- Find : a minimum sequence of P operations to turn Sinto T

- example : P = {transposition} (swap two consecutive substrings)

Genomic distances

- Given : two strings S and T, a set of allowed operations P
- Find : a minimum sequence of P operations to turn Sinto T

- example : P = {transposition} (swap two consecutive substrings)

S=zabcdadbce

T=z=aadcebcdb

Genomic distances

- Given : two strings S and T, a set of allowed operations P
- Find : a minimum sequence of P operations to turn Sinto T

- example : P = {transposition} (swap two consecutive substrings)

S=zabcdadbce

!

aadbcdbce

T=z=aadcebcdb

Genomic distances

- Given : two strings S and T, a set of allowed operations P
- Find : a minimum sequence of P operations to turn Sinto T

- example : P = {transposition} (swap two consecutive substrings)

S=zabcdadbce

!

aadbcdbce

!

T=z=aadcebcdb

Genomic distances

- Given : two strings S and T, a set of allowed operations P
- Find : a minimum sequence of P operations to turn Sinto T

- example : P = {inversion} (revert + change sign of a substring)

S=zatbtctdta d"btc

T=at*bta*dctb dc*

Genomic distances

- Given : two strings S and T, a set of allowed operations P
- Find : a minimum sequence of P operations to turn Sinto T

- example : P = {inversion} (revert + change sign of a substring)

S=zatbtctdt*a d"btc

!

a*btat*d cd"btc

T=at*bta*dctb dc*

Genomic distances

- Given : two strings S and T, a set of allowed operations P
- Find : a minimum sequence of P operations to turn Sinto T

- example : P = {inversion} (revert + change sign of a substring)

S=zatbtctdt*a d"btc

!

a*btat*d c dbtc

!

T=at*bta*dctb dc*

Many other operations

* Transpositions
- Block interchange (swap any two substrings)
* Inversions

- Unsigned inversions (reverse substring, don’t change sign)

- Flip (flip sign of substring, don’t reverse)
- k-cut (split into k substrings, permute them)
- k-inversion (choose k substrings, invert them all)

- 4+ P could be any subset of these

Genomic distances

- Given : two strings S and T, a set of allowed operations P
- Find : a minimum sequence of P operations to turn Sinto T

- If Sand T are permutations, most P are FPT in k = distance.
- Transpositions is hard [Bulteau, Fertin, & Rusu, SIDMA12]

- All are FPT in k + |§|

- Sand T are not permutations (and have unbounded size)!
- In general, FPT complexity unknown for most P.

* In thiswork : all FPTink + d

D
Untouched blocks

- A minimum transformation scenario leaves some blocks of S
and T “untouched”

S=zabcdadbce

!

aadbcdbce

!

T=z=aadcebcdb

D
Untouched blocks

- A minimum transformation scenario leaves some blocks of S
and T “untouched”

ala djb c djbjc e|

T =|lala d|c e|lb c dlb

Untouched blocks

- A minimum transformation scenario leaves some blocks of S

and T “untouched”

S =|lalb c d|lad|b|c e

T =|lala d|c e|lb c dlb

Untouched blocks

- A minimum transformation scenario leaves some blocks of S

and T “untouched”

Untouched blocks

- A minimum transformation scenario leaves some blocks of S
and T “untouched”

- If the matching blocks were known, we could reduce to the
permutation variant.

S=|1] 2 | 314]|5

Minimum Common String Partition (MCSP)

- Given : two strings S and T, integer k

- Find : a partition into at most k blocks of S and T that allow a
perfect matching of equal blocks.

S =|lalb c d|la d|b|c e

T =|lala d|c e/b c dlb

Minimum Common String Par

- Given : two strings S and T, integer k

- Find : a partition into at most k blocks of S and T that allow a
perfect matching of equal blocks.

ition (MCSP)

- MCSP is FPT in k [Bulteau & Komusiewicz, SODA2014]

S =

a

bcd

a dib|c e

ad

ce

bcdb

An idea

- Find a MCSP in time 0(2%°n)
- Assign each matched block a unique id
- Solve the resulting permutation instance

S =|alb c dlad|b|c e S=1

T=|alad[celbcdb T=1

L
An idea

- Find a MCSP in time 0(2%°n)
- Assign each matched block a unique id
- Solve the resulting permutation instance

- PROBLEM : a MCSP might not correspond to the blocks
resulting from an optimal transformation sequence.

L
An idea

- Find a MCSP in time 0(2%°n)
- Assign each matched block a unique id
- Solve the resulting permutation instance

- PROBLEM : a MCSP might not correspond to the blocks
resulting from an optimal transformation sequence.
- All MCSP need to be considered.
- Worse: suboptimal MCSPs need to be considered, up to size p * k.
- Bulteau & Komusiewicz’s algorithm cannot list all those in FPT time.

Permutation-Constrained Common String
Partition (PCSP)

- Given : two strings S and T, integer k, permutation m of |K]

- Find : a partition into k blocks of S and T, with a perfect
matching that agrees with 1.

k=5
n:(1,4,2,5,3)

S=zabcdadbce

T=z=aadcebcdb

Permutation-Constrained Common String
Partition (PCSP)

- Given : two strings S and T, integer k, permutation m of |K]
- Find : a partition into k blocks of S and T, with a perfect

matching that agrees with 1.

k=5
n:(1,4,2,5,3)

S=zabcdadbce S =|alb c d|la d|b|c e

T=aadcebcdb T=lalad|celbcdb

PCSP vs genomic distances

Theorem

If PCSP is FPT, then for most combination P of operations
mentioned earlier, computing dist,(S,T) is FPT.

Theorem 1. Let H be a set of simple string functions, and let P be a sel of
H-restricted p-operations.

Assume that any PCSP instance (s, t,0,m, F) satisfying F' € H{k)* can be
solved in time g(¢,n). Then deciding whether dp(s,t) < k can be done in time

O((ph)*P* 1 - [H(k)|P* - [P|* - g(1 + k(p — 1), n)).

PCSP vs genomic distances

Theorem

If PCSP is FPT, then for most combination P of operations
mentioned earlier, computing dist,(S,T) is FPT.

- Idea: given S and T, to decide whether dist,(S,T) < k:
Foreachl = 1 .. k *c //for some constant c that depends on P

For each permutation m of [{]
If S, T admit a partition into [blocks that agrees with 1

Compute dist,((1,2, ..., 1),)
If the distance is k or less
return true

return no

What about inversions?

S=zatbtctdt*a d"btc

!

a*btat*d c dbtc

!

T=at*bta*dctb dc*

What about inversions?

- Inversions => block partition in which some blocks are
reversed, some not.

S=zatbtctdt*a d"btc

!

a*btat*d c dbtc

!

T=at*bta*dctb dc*

What about inversions?

- Inversions => block partition in which some blocks are
reversed, some not.

S =[a* b*[c[d* ald* b* ¢

!

a* b*la* d]c]d* b* ¢

!

T =|la* b*la® d’|c* b~ d|c*

What about inversions?

- Inversions => block partition in which some blocks are
reversed, some not.

S =[a* b*[c[d* ald* b* ¢

T =|la* b*la® d’|c* b~ d|c*

What about inversions?

- Inversions => block partition in which some blocks are

reversed, some not.

- More generally, each block b, might be affected by some

string function f,(b,).

S =

at bt

c[d* a]d* b* ¢

at bt

lct b d

Generalized PCSP

- Given : strings S and T, k, permutation m, functions f, ..., f}

- Find : a partition into k blocks of S and T, with a perfect
matching that agrees with m, such that block b, is matched

with block f;(b,).

k=4 fi=f,=idf3=f,=rev
n:(1,4,23)
S=za*btctdta dt*b*c

T=atbta*d ctb dc*

at bt

ctld* ald* bt ¢

at bt

Ict b d

Generalized PCSP vs genomic distances

Theorem

[f Generalized PCSP is FPT, then for any combination P of
operations mentioned earlier, computing dist,(S,T) is FPT.

Theorem 1. Let H be a set of simple string functions, and let P be a sel of

H-restricted p-operations.
Assume that any PCSP instance (s, t,0,m, F) satisfying F' € H{k)* can be
solved in time g(¢,n). Then deciding whether dp(s,t) < k can be done in time

O((ph)*P* 1 - [H(k)|P* - [P|* - g(1 + k(p — 1), n)).

Generalized PCSP vs genomic distances

Theorem

[f Generalized PCSP is FPT, then for any combination P of
operations mentioned earlier, computing dist,(S,T) is FPT.

PROBLEM : PCSP is W[1]-hard in parameter k, generalized or
not [Bulteau, Fellows, Komusiewicz, TBA]

We show that PCSP is FPTink + d

Generalized PCSP vs genomic distances

Theorem

Generalized PCSP is FPT in k + d and can be solved in time
0(d**(8k)*n), if the f; functions are in {id, rev, urev, flip}.

Reminder: k = number of blocks
d = max# occurrences of a symbol

Generalized PCSP vs genomic distances

Theorem

Generalized PCSP is FPT in k + d and can be solved in time
0(d**(8k)*n), if the f; functions are in {id, rev, urev, flip}.

Implications:

» Theorem 19. Assume that s and t have al most d occurrences of the same character, and
k is the corresponding solulion size. Then the following results hold :

= the transposition distance can be computed in time kO®) d%%+2q,

= the block interchange distance can be computed in time kO*)d8k+2p,

w the flip, reversal and unsigned reversal distances can be computed in time kOF®) d¥%+2y
w the p-cul distance can be computed in time (pk)O®PF) @2kp—1+2y,

= the m-multi-reversal distance can be computed in time (mk)©O(mk)domky .

w for any subset P of operations among lranspositions, block inlerchanges, reversals, un-
signed reversals or flips, computing dp(s,t) can be done in time kOK) g8k+2p

Generalized PCSP vs genomic distances

Theorem

Generalized PCSP is FPT in k + d and can be solved in time
0(d**(8k)*n), if the f; functions are in {id, rev, urev, flip}.

FPT algorithm for PCSP

k=4 fi=f,=id,f3=f,=rev

m:(1,4,2,3)

(D (2)

(3)

(4)

a*btctdta d*b*c

a*bta*d ctb dct

(1 (2)

(3)

(4)

Idea (from [Bulteau et al,,
WABI13]) :

Find one pair of matched
characters per block of the
solution.

Make sure that m and the f's
are satisfied.

e E
FPT algorithm for PCSP

Idea (from [Bulteau et al,,
k=4 fi=f,=id fs=f,=rev WABI13]) :

Find one pair of matched
m:(1,4,2,3) characters per block of the

solution.

Make sure that m and the f's

M B @ are satisfied.

|a+ b* C+|d+ a_|d+ b* [f these were known, the
entire blocks could be
recovered.

a’ btla* d{ct b-dict
(D) (2) 3 &

e E
FPT algorithm for PCSP

k=4 fi=f,=
m:(1,4,2,3)

id, f;=

fis=Tev

a*btctdta d*btc

atbta*dctb dct

Initially, pick any character.
Try to match with every
possible combination of
matching character + block
number.

FPT algorithm for PCSP

k=4 fi=f,=
m:(1,4,2,3)

id, f;=

fis=Tev

a*btctdta d*b*tc

atbta*dctb dct

Initially, pick any character.
Try to match with every
possible combination of
matching character + block
number.

e E
FPT algorithm for PCSP

k=4 fi=f,=idf3=f,=rev

n: (1,4,2,3)

(1)

a*btctdtra d*b*c

atbta*dctb dct
(1)

Initially, pick any character.
Try to match with every
possible combination of
matching character + block
number.

Number of choices at most

2dk

e E
FPT algorithm for PCSP

k=4 fi=f,=idf3=f,=rev

n: (1,4,2,3)

(2)

a*btctdtra d*b*c

atbta*dctb dct
(4)

Initially, pick any character.
Try to match with every
possible combination of
matching character + block
number.

Number of choices at most

2dk

FPT algorithm for PCSP

k=4 fi=f,=idf3=f,=rev

n: (1,4,2,3)

(3)

a*btctdta d*b*c

atbta*dctb dct
(2)

Initially, pick any character.
Try to match with every
possible combination of
matching character + block
number.

Number of choices at most

2dk

FPT algorithm for PCSP

k=4 fi=f,=idf3=f,=rev

n: (1,4,2,3)

(4)

a*btctdta d*b*c

atbta*dctb dct
(3)

Initially, pick any character.
Try to match with every
possible combination of
matching character + block
number.

Number of choices at most

2dk

FPT algorithm for PCSP

k=4 fi=f,=idf3=f,=rev

n: (1,4,2,3)

(4)
a*btctdta d*b*c

atbta*dctb dct
(3)

Initially, pick any character.
Try to match with every
possible combination of
matching character + block
number.

Number of choices at most
2dk

We call this a fixed match.

e E
FPT algorithm for PCSP

k=4 fi=f,=
w: (1,4,2,3)

id, f3=

f.=Trev

(1)
a*btctdta d*btc

atbta*dctb dct
(1)

Given a set of fixed matches,
call two characters matchable
if they could be in the same
block as one of its closest
fixed matches.

e E
FPT algorithm for PCSP

k=4 fi=f,=
w: (1,4,2,3)

id, f3=

f.=Trev

(1)
a*btctdta d*btc

atbta*dctb dct
(1)

Given a set of fixed matches,
call two characters matchable
if they could be in the same
block as one of its closest
fixed matches.

FPT algorithm for PCSP

k=4 fi=f,=
w: (1,4,2,3)

id, f3=

f.=Trev

(1)

a*btctdta d*btc

atbta*dctb dct

(1)

(4)

(3)

Given a set of fixed matches,
call two characters matchable
if they could be in the same
block as one of its closest
fixed matches.

e E
FPT algorithm for PCSP

Given a set of fixed matches,
k=4 f,=f,=id,fs=f,=rev call two characters matchable
if they could be in the same
block as one of its closest
fixed matches.

n: (1,4,2,3)

(1) (4)
a*btctdtra d*b*c

.

atbta*dctb dct
(1) (3)

e E
FPT algorithm for PCSP

Given a set of fixed matches,
k=4 f,=f,=id,fs=f,=rev call two characters matchable
if they could be in the same
block as one of its closest
fixed matches.

n: (1,4,2,3)

(4) As long as there is an

) tchable charact
tbht et dt a- d* bt o unmatchable character,

a*b*c a C" branch into all ways of

matching it in a new fixed

match.

.

atbta*dctb dct
(1) (3)

e E
FPT algorithm for PCSP

Match graph: vertices = characters, edge = fixed matches and
matchable pairs

-a b ¢ -b

WA

-¢c -b a -b

e E
FPT algorithm for PCSP

A set of fixed matches is complete if each block of a solution
corresponds to a distinct fixed match.

e E
FPT algorithm for PCSP

A set of fixed matches is complete if each block of a solution
corresponds to a distinct fixed match.

Lemma /B et al] + generalized by us for f; functions/

If there is a path P with an odd number of vertices in the
match graph, the set of fixed matches is not complete.

e E
FPT algorithm for PCSP

A set of fixed matches is complete if each block of a solution
corresponds to a distinct fixed match.

Lemma /B et al. + generalized by us for f; functions/

If there is a path P with an odd number of vertices in the
match graph, the set of fixed matches is not complete.

Hence, we some character that occurs in P must be added to a
fixed match.

P has at most 4d characters, branch into 4d * 2dk = 8d?%k
cases.

e E
FPT algorithm for PCSP

Lemma
If the match graph has no odd path, then it is complete.

e E
FPT algorithm for PCSP

Lemma
If the match graph has no odd path, then it is complete.

To summarize:
If there is an odd path P

Branch into 8d?k ways to add a new block (i.e.a new
fixed match)

Else, the graph is complete => there is a block partition

Since we need to create at most k blocks, create a recursion
tree of depth at most k

1 function PCSP(s,t, ¢, m,F,M)

2 //At the initial call, M = ()

3 if M is not order-consistent then

4 I return “No solution”

5 Construct G(M)

6 if G(M) has an odd path (u,,...,u;) then
F
8
9

if |M| = ¢ then
| return “No solution”
foreach u; on the path and each marker v with the same symbol or negated
symbol, such that v is not already in a fired-match of M do
10 foreach b; that is not already in a fired-match of M do
11 Call PCSP(s,t,l,m,F,M U {(u,v,w(b;),b;)})
12 if a positive answer was returned then
13 return “Yes”
14 end
15 end
16 return “No solution”
17 else

18 return “Yes”

Generalized PCSP vs genomic distances

Theorem

Generalized PCSP is FPT in k + d and can be solved in time
0(d**(8k)*n), if the f; functions are in {id, rev, urev, flip}.

Conclusion

- PCSP provides FPT algorithms for many string
rearrangement problems.

- Allowable operations more generic than presented here, see
paper.

- Most genomic problems are FPTink + d

- Are they all FPT in k?
- PCSP not useful here, because it is W[1]-hard in k...

- Genomic distances not handled by our framework : length-
changing operations
- E.g. block duplications or block deletions

