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In this talk

• Many genomic distances fit into a generic framework

• Permutation-Constrained String Partition (PCSP) solves 
genomic distances

• PCSP is FPT in (k + d) 
• k = # of blocks and d = max symbol occurrences

• => many genomic distances are FPT in (k + d)



Genomic distances

• Given : two strings S and T, a set of allowed operations P

• Find : a minimum sequence of P operations to turn S into T
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Genomic distances

• Given : two strings S and T, a set of allowed operations P

• Find : a minimum sequence of P operations to turn S into T

• example : P = {inversion}  (revert + change sign of a substring)

S = a+ b+ c+ d+ a- d+ b+ c-

T = a+ b+ a+ d- c+ b- d- c+

a+ b+ a+ d- c- d+ b+ c-



Many other operations

• Transpositions

• Block interchange (swap any two substrings)

• Inversions

• Unsigned inversions (reverse substring, don’t change sign)

• Flip (flip sign of substring, don’t reverse)

• k-cut (split into k substrings, permute them)

• k-inversion (choose k substrings, invert them all)

• + P could be any subset of these



Genomic distances

• Given : two strings S and T, a set of allowed operations P

• Find : a minimum sequence of P operations to turn S into T

• If S and T are permutations, most P are FPT in k = distance.
• Transpositions is hard [Bulteau, Fertin, & Rusu, SIDMA12]

• All are FPT in k + |S|

• S and T are not permutations (and have unbounded size)!

• In general, FPT complexity unknown for most P.

• In this work : all FPT in 𝑘 + 𝑑
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Untouched blocks

• A minimum transformation scenario leaves some blocks of S 
and T “untouched”

• If the matching blocks were known, we could reduce to the 
permutation variant.

S = 1    2      3  4  5

T = 1   3   5     2    4



Minimum Common String Partition (MCSP)

• Given : two strings S and T, integer k

• Find : a partition into at most k blocks of S and T that allow a 
perfect matching of equal blocks.
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Minimum Common String Partition (MCSP)

• Given : two strings S and T, integer k

• Find : a partition into at most k blocks of S and T that allow a 
perfect matching of equal blocks.

• MCSP is FPT in k [Bulteau & Komusiewicz, SODA2014]
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An idea

• Find a MCSP in time O(2𝑘2
𝑛)

• Assign each matched block a unique id
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An idea

• Find a MCSP in time O(2𝑘2
𝑛)

• Assign each matched block a unique id

• Solve the resulting permutation instance

• PROBLEM : a MCSP might not correspond to the blocks 
resulting from an optimal transformation sequence.
• All MCSP need to be considered.

• Worse: suboptimal MCSPs need to be considered, up to size p * k.

• Bulteau & Komusiewicz’s algorithm cannot list all those in FPT time.



Permutation-Constrained Common String 
Partition (PCSP)
• Given : two strings S and T, integer k, permutation 𝛑 of [k]

• Find : a partition into k blocks of S and T, with a perfect 
matching that agrees with 𝛑.
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mentioned earlier, computing 𝑑𝑖𝑠𝑡𝑃(𝑆, 𝑇) is FPT.



PCSP vs genomic distances

Theorem

If PCSP is FPT, then for most combination 𝑃 of operations 
mentioned earlier, computing 𝑑𝑖𝑠𝑡𝑃(𝑆, 𝑇) is FPT.

• Idea : given S and T, to decide whether 𝑑𝑖𝑠𝑡𝑃(𝑆, 𝑇) ≤ 𝑘:
For each 𝑙 = 1 . . 𝑘 ∗ 𝑐 //for some constant c that depends on P

For each permutation 𝛑 of [𝑙]

If 𝑆, 𝑇 admit a partition into 𝑙 blocks that agrees with 𝛑

Compute 𝑑𝑖𝑠𝑡𝑃((1,2, … , 𝑙), 𝛑)

If the distance is 𝑘 or less

return true

return no
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What about inversions?

• Inversions => block partition in which some blocks are 
reversed, some not.

• More generally, each block 𝑏𝑖 might be affected by some 
string function 𝑓𝑖(𝑏𝑖).

S = a+ b+ c+ d+ a- d+ b+ c-

T = a+ b+ a+ d- c+ b- d- c+



Generalized PCSP

• Given : strings 𝑆 and 𝑇, 𝑘, permutation 𝛑, functions 𝑓1, … , 𝑓𝑘

• Find : a partition into 𝑘 blocks of 𝑆 and 𝑇, with a perfect 
matching that agrees with 𝛑, such that block 𝑏𝑖 is matched 
with block 𝑓𝑖(𝑏𝑖).

𝛑 ∶ 1, 4, 2, 3

𝑘 = 4 𝑓1 = 𝑓2 = 𝑖𝑑, 𝑓3 = 𝑓4 = 𝑟𝑒𝑣

S = a+ b+ c+ d+ a- d+ b+ c-

T = a+ b+ a+ d- c+ b- d- c+

S = a+ b+ c+ d+ a- d+ b+ c-

T = a+ b+ a+ d- c+ b- d- c+



Generalized PCSP vs genomic distances

Theorem

If Generalized PCSP is FPT, then for any combination 𝑃 of 
operations mentioned earlier, computing 𝑑𝑖𝑠𝑡𝑃(𝑆, 𝑇) is FPT.



Generalized PCSP vs genomic distances

Theorem

If Generalized PCSP is FPT, then for any combination 𝑃 of 
operations mentioned earlier, computing 𝑑𝑖𝑠𝑡𝑃(𝑆, 𝑇) is FPT.

PROBLEM : PCSP is W[1]-hard in parameter 𝑘, generalized or 
not [Bulteau, Fellows, Komusiewicz, TBA]

We show that PCSP is FPT in 𝑘 + 𝑑



Generalized PCSP vs genomic distances

Theorem

Generalized PCSP is FPT in 𝑘 + 𝑑 and can be solved in time 
𝑂(𝑑2𝑘 8𝑘 𝑘 𝑛), if the 𝑓𝑖 functions are in {𝑖𝑑, 𝑟𝑒𝑣, 𝑢𝑟𝑒𝑣, 𝑓𝑙𝑖𝑝}.

Reminder: 𝑘 = number of blocks

𝑑 = max # 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑎 𝑠𝑦𝑚𝑏𝑜𝑙



Generalized PCSP vs genomic distances

Theorem

Generalized PCSP is FPT in 𝑘 + 𝑑 and can be solved in time 
𝑂(𝑑2𝑘 8𝑘 𝑘 𝑛), if the 𝑓𝑖 functions are in {𝑖𝑑, 𝑟𝑒𝑣, 𝑢𝑟𝑒𝑣, 𝑓𝑙𝑖𝑝}.

Implications:
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Theorem
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FPT algorithm for PCSP

a+ b+ c+ d+ a- d+ b+ c-

a+ b+ a+ d- c+ b- d- c+

𝛑 ∶ 1, 4, 2, 3

𝑘 = 4 𝑓1 = 𝑓2 = 𝑖𝑑, 𝑓3 = 𝑓4 = 𝑟𝑒𝑣

Idea (from [Bulteau et al., 
WABI13]) : 
Find one pair of matched
characters per block of the 
solution.
Make sure that 𝛑 and the 𝑓's 
are satisfied.(1) (2) (3) (4)
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Idea (from [Bulteau et al., 
WABI13]) : 
Find one pair of matched
characters per block of the 
solution.
Make sure that 𝛑 and the 𝑓's 
are satisfied.

If these were known, the 
entire blocks could be
recovered.
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possible combination of 
matching character + block 
number.



FPT algorithm for PCSP

a+ b+ c+ d+ a- d+ b+ c-

a+ b+ a+ d- c+ b- d- c+

𝛑 ∶ 1, 4, 2, 3

𝑘 = 4 𝑓1 = 𝑓2 = 𝑖𝑑, 𝑓3 = 𝑓4 = 𝑟𝑒𝑣

Initially, pick any character.
Try to match with every 
possible combination of 
matching character + block 
number.



FPT algorithm for PCSP

a+ b+ c+ d+ a- d+ b+ c-

a+ b+ a+ d- c+ b- d- c+

𝛑 ∶ 1, 4, 2, 3

𝑘 = 4 𝑓1 = 𝑓2 = 𝑖𝑑, 𝑓3 = 𝑓4 = 𝑟𝑒𝑣

Initially, pick any character.
Try to match with every 
possible combination of 
matching character + block 
number.
Number of choices at most 
2𝑑𝑘

(1)

(1)



FPT algorithm for PCSP

a+ b+ c+ d+ a- d+ b+ c-

a+ b+ a+ d- c+ b- d- c+

𝛑 ∶ 1, 4, 2, 3

𝑘 = 4 𝑓1 = 𝑓2 = 𝑖𝑑, 𝑓3 = 𝑓4 = 𝑟𝑒𝑣

Initially, pick any character.
Try to match with every 
possible combination of 
matching character + block 
number.
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2𝑑𝑘
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FPT algorithm for PCSP

a+ b+ c+ d+ a- d+ b+ c-

a+ b+ a+ d- c+ b- d- c+

𝛑 ∶ 1, 4, 2, 3

𝑘 = 4 𝑓1 = 𝑓2 = 𝑖𝑑, 𝑓3 = 𝑓4 = 𝑟𝑒𝑣

Initially, pick any character.
Try to match with every 
possible combination of 
matching character + block 
number.
Number of choices at most 
2𝑑𝑘

(3)

(2)



FPT algorithm for PCSP

a+ b+ c+ d+ a- d+ b+ c-

a+ b+ a+ d- c+ b- d- c+

𝛑 ∶ 1, 4, 2, 3

𝑘 = 4 𝑓1 = 𝑓2 = 𝑖𝑑, 𝑓3 = 𝑓4 = 𝑟𝑒𝑣

Initially, pick any character.
Try to match with every 
possible combination of 
matching character + block 
number.
Number of choices at most 
2𝑑𝑘

(4)

(3)



FPT algorithm for PCSP

a+ b+ c+ d+ a- d+ b+ c-

a+ b+ a+ d- c+ b- d- c+

𝛑 ∶ 1, 4, 2, 3

𝑘 = 4 𝑓1 = 𝑓2 = 𝑖𝑑, 𝑓3 = 𝑓4 = 𝑟𝑒𝑣

Initially, pick any character.
Try to match with every 
possible combination of 
matching character + block 
number.
Number of choices at most 
2𝑑𝑘

We call this a fixed match.

(4)

(3)
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call two characters matchable
if they could be in the same 
block as one of its closest 
fixed matches.
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FPT algorithm for PCSP

a+ b+ c+ d+ a- d+ b+ c-

a+ b+ a+ d- c+ b- d- c+

𝛑 ∶ 1, 4, 2, 3

𝑘 = 4 𝑓1 = 𝑓2 = 𝑖𝑑, 𝑓3 = 𝑓4 = 𝑟𝑒𝑣

Given a set of fixed matches, 
call two characters matchable
if they could be in the same 
block as one of its closest 
fixed matches.

As long as there is an 
unmatchable character, 
branch into all ways of 
matching it in a new fixed 
match.

(1)

(1)

(4)

(3)



FPT algorithm for PCSP

Match graph: vertices = characters, edge = fixed matches and 
matchable pairs
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corresponds to a distinct fixed match.
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Lemma [B et al] + generalized by us for 𝑓𝑖 functions]

If there is a path 𝑃 with an odd number of vertices in the
match graph, the set of fixed matches is not complete.  



FPT algorithm for PCSP

A set of fixed matches is complete if each block of a solution 
corresponds to a distinct fixed match.

Lemma [B et al. + generalized by us for 𝑓𝑖 functions]

If there is a path 𝑃 with an odd number of vertices in the
match graph, the set of fixed matches is not complete.  

Hence, we some character that occurs in 𝑃 must be added to a 
fixed match.  

𝑃 has at most 4𝑑 characters, branch into 4𝑑 ∗ 2𝑑𝑘 = 8𝑑2𝑘
cases.



FPT algorithm for PCSP

Lemma

If the match graph has no odd path, then it is complete.  



FPT algorithm for PCSP

Lemma

If the match graph has no odd path, then it is complete.  

To summarize: 

If there is an odd path 𝑃

Branch into 8𝑑2𝑘 ways to add a new block (i.e. a new 
fixed match)

Else, the graph is complete => there is a block partition

Since we need to create at most 𝑘 blocks, create a recursion
tree of depth at most 𝑘





Generalized PCSP vs genomic distances

Theorem

Generalized PCSP is FPT in 𝑘 + 𝑑 and can be solved in time 
𝑂(𝑑2𝑘 8𝑘 𝑘 𝑛), if the 𝑓𝑖 functions are in {𝑖𝑑, 𝑟𝑒𝑣, 𝑢𝑟𝑒𝑣, 𝑓𝑙𝑖𝑝}.



Conclusion

• PCSP provides FPT algorithms for many string 
rearrangement problems.

• Allowable operations more generic than presented here, see
paper.

• Most genomic problems are FPT in 𝑘 + 𝑑

• Are they all FPT in 𝑘?
• PCSP not useful here, because it is W[1]-hard in 𝑘…

• Genomic distances not handled by our framework : length-
changing operations
• E.g. block duplications or block deletions


