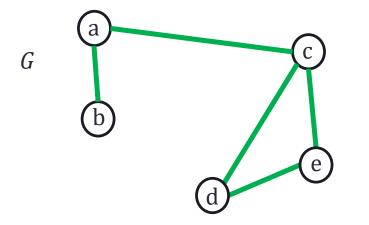
RECOGNIZING K-LEAF POWERS IN POLYNOMIAL TIME, FOR CONSTANT K

Manuel Lafond, Université de Sherbrooke, Canada

A graph *G* is a *k*-leaf power if there exists a tree *T* such that:

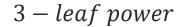
- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

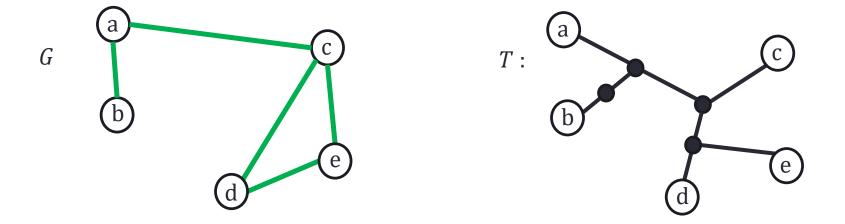
$$3 - leaf power?$$



A graph *G* is a *k*-leaf power if there exists a tree *T* such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$



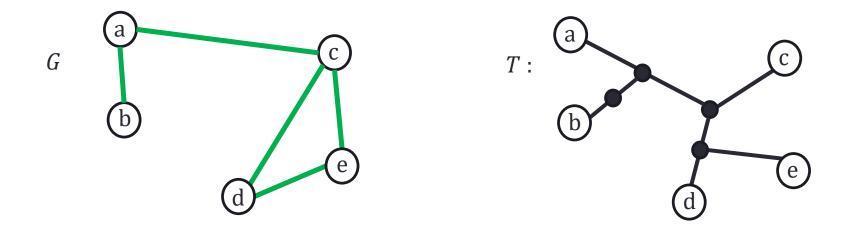


A graph *G* is a *k*-leaf power if there exists a tree *T* such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

Equivalently, *G* is a *k*-leaf power if it can be obtained by taking the *k*-th power of a tree, and taking the subgraph induced by the leaves of the tree.

3 – leaf power



A graph *G* is a *k*-leaf power if there exists a tree *T* such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

Open problems [Nishimura, Ragde, Thilikos, 2002]

- Characterize *k*-leaf powers, for every *k*.
- Characterize leaf powers, the union of *k*-leaf powers for all *k*.
- Is recognizing leaf powers in P?
- For fixed *k*, is recognizing *k*-leaf powers in P?

A graph *G* is a *k*-leaf power if there exists a tree *T* such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$

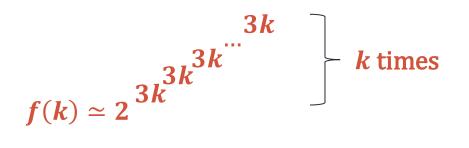
Open problems [Nishimura, Ragde, Thilikos, 2002]

- Characterize *k*-leaf powers, for every *k*. **OPEN**
- Characterize leaf powers, the union of *k*-leaf powers for all *k*. **OPEN**
- Is recognizing leaf powers in P? **OPEN**
- For fixed *k*, is recognizing *k*-leaf powers in P? **YES, THIS TALK**

There is an algorithm that, given a graph *G*, decides whether *G* is a *k*-leaf power in time $O(n^{f(k)})$, where n = |V(G)| and *f* is a function that depends only on *k*.

There is an algorithm that, given a graph *G*, decides whether *G* is a *k*-leaf power in time $O(n^{f(k)})$, where n = |V(G)| and *f* is a function that depends only on *k*.

There is an algorithm that, given a graph G, decides whether G is a k-leaf power in time $O(n^{f(k)})$, where n = |V(G)| and f is a function that depends only on k.



Relevance

- Many papers on leaf powers, slow progress. Few results apply to all *k*.

- Several similar tree-definable graph classes. Techniques developed here might be applicable to them.

Known results

- **2-leaf powers** = P3-free graphs *[folklore]*
- 3-leaf powers = chordal + (bull, gem, dart)-free graphs
 [Rautenbach, Disc Maths 2006]
- 4-leaf powers = chordal + X-free, where X is a finite set of forbidden subgraphs [Brandstädt et al., TALG 2008]
- **5-leaf powers** recognition in P [Chang & Ko, WG 2007]
- **6-leaf powers** recognition in P [Ducoffe, WG 2019]
- Recognizing k-leaf powers is FPT in k + degeneracy(G), and FPT in k + treewidth(G). [Eppstein & Havvaei, IPEC 2018]

Known results

- Leaf power = graphs that are *k*-leaf powers for some *k*.
- All leaf powers are **chordal**, and also **strongly chordal**
- Converse not true [L, WG2017; Jaffke & al., TCS2019]
- Subclasses of strongly chordal (interval, rooted directed, ptolemaic) graphs are easy to recognize [Brandstädt et al., LATIN2008 & DiscMath2010]
- Leaf powers have **mim-width 1** *[Jaffke & al., TCS2019]*
- Leaf powers with star NeS models in P [Bergougnoux, 2021]

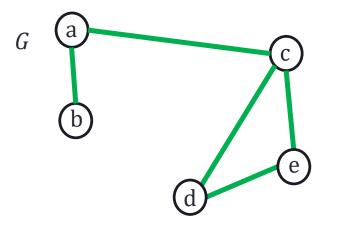
Other tree-definable classes

- Many other tree-to-graph representations, all with similar open problems
 - Pairwise compatiblity graphs (PCG)
 - *uv* edge iff distance in interval [*l*, *h*]
 - k-interval PCGs, OR-PCGs and AND-PCGs
 - Allow k-intervals, union/intersection of PCGs
 - Orthology graphs
 - *uv* edge iff lca has label 1
 - Fitch graphs
 - uv edge iff some edge on u v path has label 1
 - Best match graphs

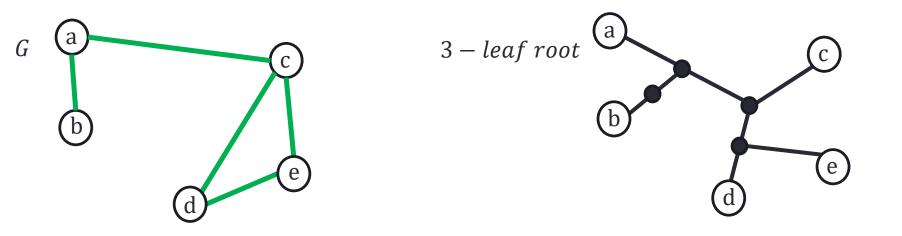
^{• .}

There is an algorithm that, given a graph *G*, decides whether *G* is a *k*-leaf power in time $O(n^{f(k)})$, where n = |V(G)| and *f* is a function that depends only on *k*.

• Given a graph *G*, we must decide whether *G* is a *k*-leaf power (assume that *k* is fixed).

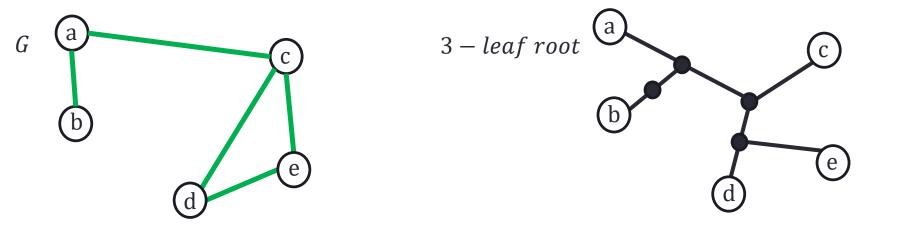


For *G* a *k*-leaf power, a *k*-leaf root of *G* is a tree with L(T) = V(G) satisfying $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$.



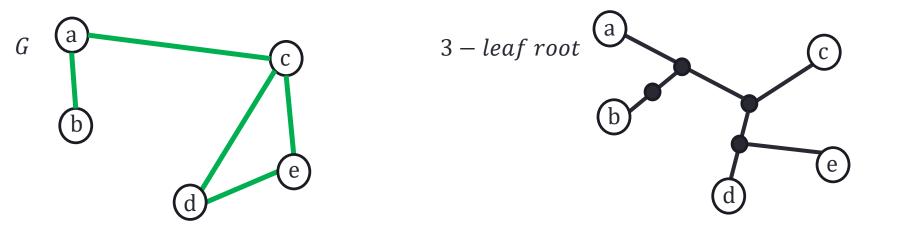
For *G* a *k*-leaf power, a *k*-leaf root of *G* is a tree with L(T) = V(G) satisfying $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$.

Theorem (from Eppstein & Havvaei, 2019) There is a function g such that one can decide in time O(g(tw(G), k)n)whether G is a k-leaf power, where tw(G) is the treewidth of G.

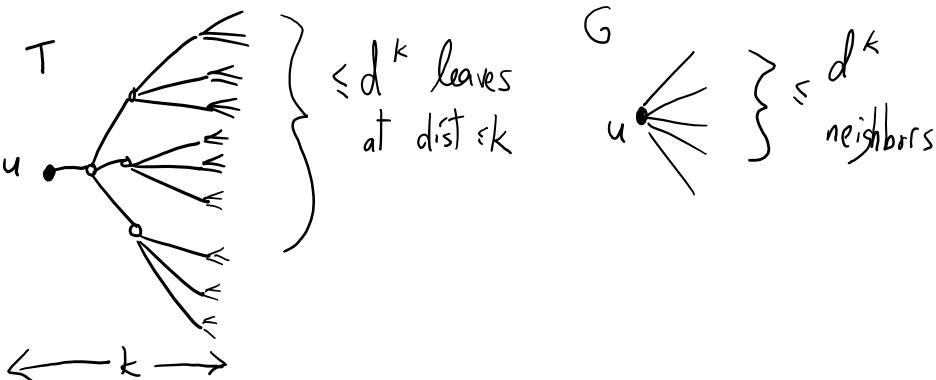


For *G* a *k*-leaf power, a *k*-leaf root of *G* is a tree with L(T) = V(G) satisfying $uv \in E(G) \Leftrightarrow dist_T(u, v) \leq k$.

Theorem



- Proof idea.
- If G admits a k-leaf root of max degree d, then G has maximum degree d^k.



- Proof idea.
- If G admits a k-leaf root of max degree d, then G has maximum degree d^k.
- In chordal graphs, we have $tw(G) = w(G) 1 \le dk$.
 - tw(G) = treewidth, w(G) = clique number
- Use Eppstein & Havvaei to decide in time
 O(g(tw(G), k)n) = O(g(d^k, k)n) whether G is a k-leaf power.

- If *d* is a function of *k*, problem solved.
- **Bottom-line** : the difficulty resides in *k*-leaf roots of high maximum degree.

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

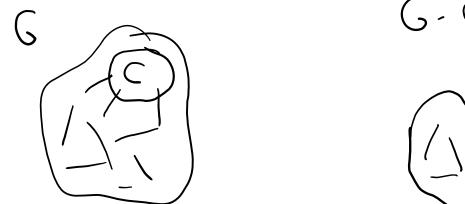
Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

This says that if *G* has high-degree *k*-leaf roots, then *G* has a redundant subset of vertices *C* that can be found and pruned quickly.



Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power. Moreover, C can be found in time $O(n^{f(k)})$ if it exists.

The algorithm:

- 1) Check if G admits a k-leaf root of degree at most d = f(k). If yes, return "yes".
- 2) Otherwise, check if G contains C as described above. If not, return "no".
- 3) Otherwise, repeat on G C.

Finishes in polynomial time, since k is fixed and this is repeated at most n times.

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

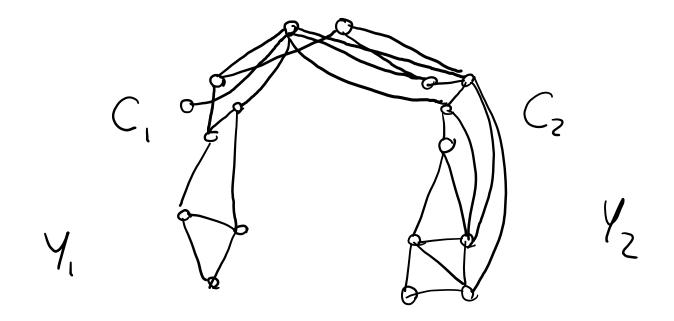
This says that if *G* has high-degree *k*-leaf roots, then *G* has a redundant subset of vertices *C* that can be found and pruned quickly.

Step 1 : find lots of subsets $C_i \cup Y_i$ such that the C_i 's are cutsets, and all have the same neighborhood structure.

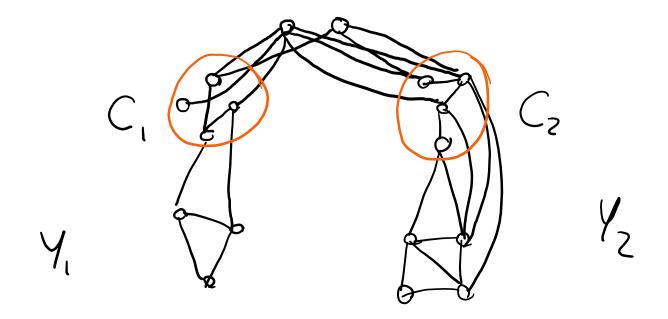
Step 2 : argue that two of those $C_1 \cup Y_1$ and $C_2 \cup Y_2$ admits the "same" *k*-leaf roots.

Step 3 : argue that $C_1 \cup Y_1$ can be removed since it behaves like $C_2 \cup Y_2$

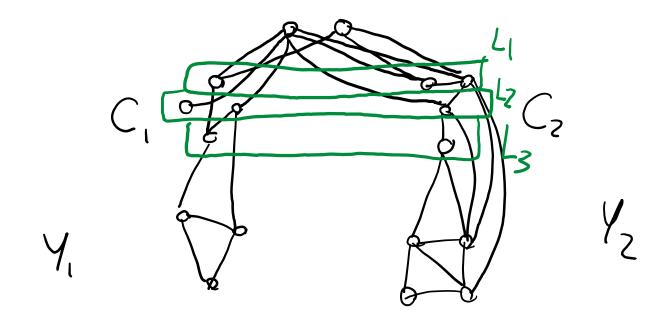
- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - C₁ ∪ C₂ can be partitioned into layers L₁, ..., Lk such that vertices in the same layer have the same neighbors in
 G − (C₁ ∪ Y₁ ∪ C₂ ∪ Y₂).



- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - C₁ ∪ C₂ can be partitioned into layers L₁, ..., Lk such that vertices in the same layer have the same neighbors in
 G − (C₁ ∪ Y₁ ∪ C₂ ∪ Y₂).



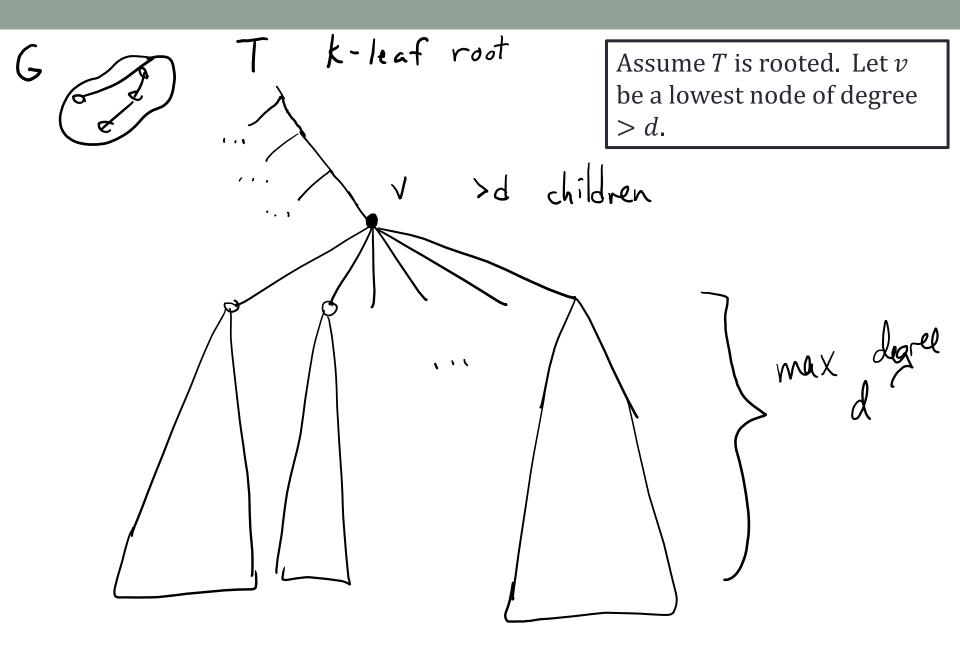
- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - $C_1 \cup C_2$ can be partitioned into layers L_1, \dots, Lk such that vertices in the same layer have the same neighbors in $G (C_1 \cup Y_1 \cup C_2 \cup Y_2)$.

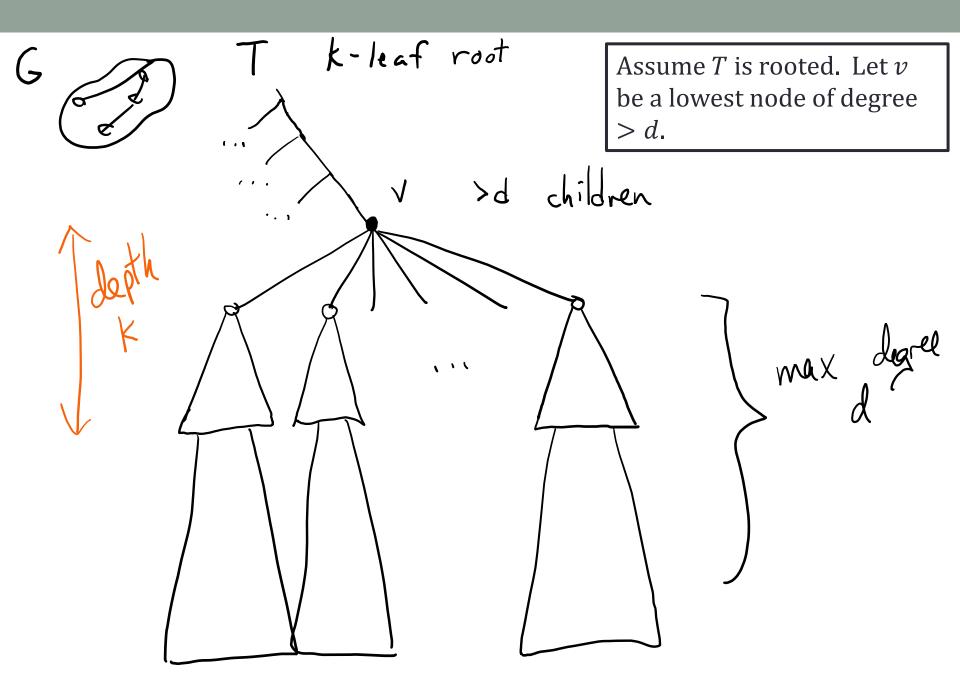


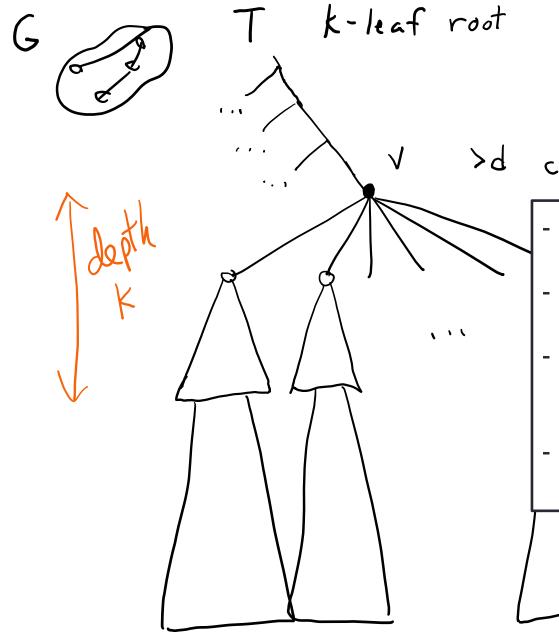
- We say that $C_1 \cup Y_1$ and $C_2 \cup Y_2 \subseteq V(G)$ are **similar** if
 - C_1 cuts Y_1 and C_2 cuts Y_2 from the rest of the graph
 - C₁ ∪ C₂ can be partitioned into layers L₁, ..., Lk such that vertices in the same layer have the same neighbors in
 G − (C₁ ∪ Y₁ ∪ C₂ ∪ Y₂).

Lemma

If *G* has a *k*-leaf root of maximum degree > *d*, then there exist disjoint $C_1 \cup Y_1, ..., Cd \cup Yd$ pairwise-similar subsets. Also, each C_i has size $\leq dk$.

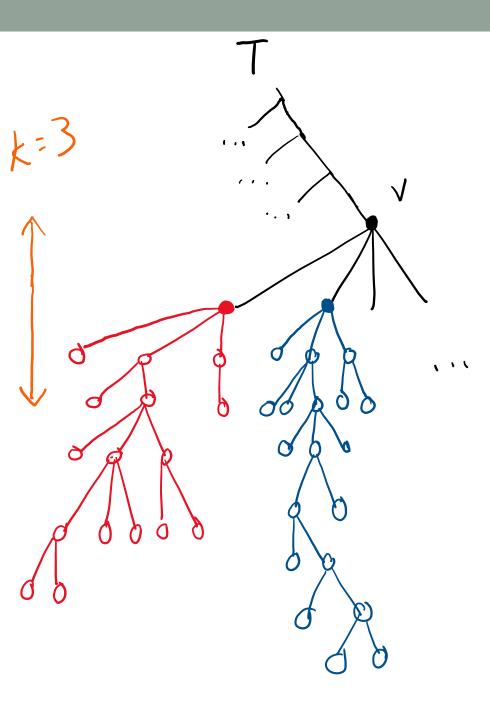




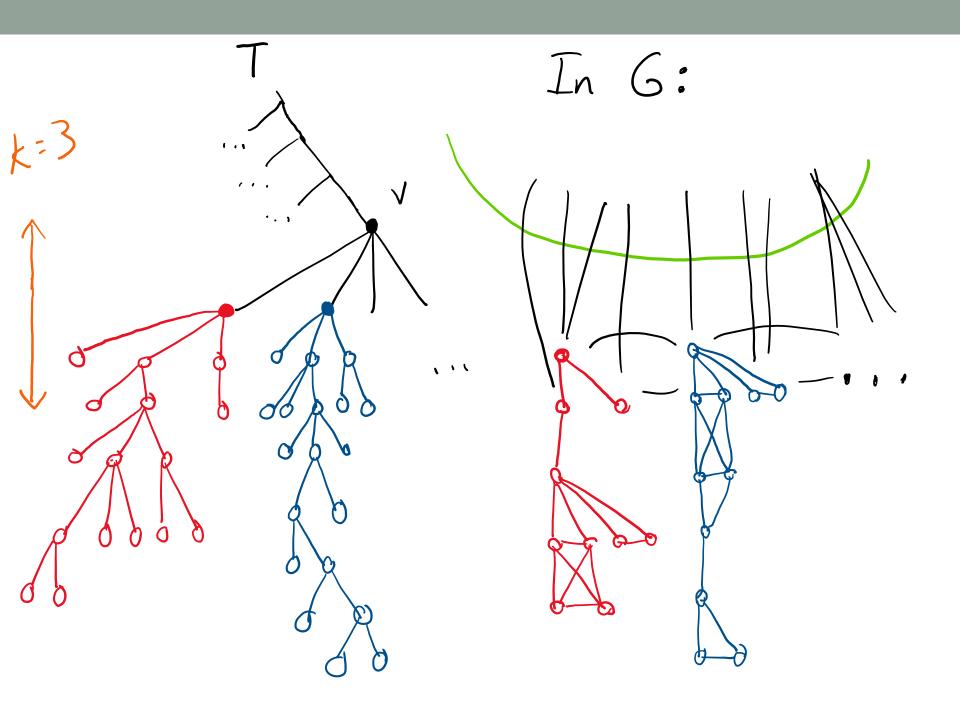


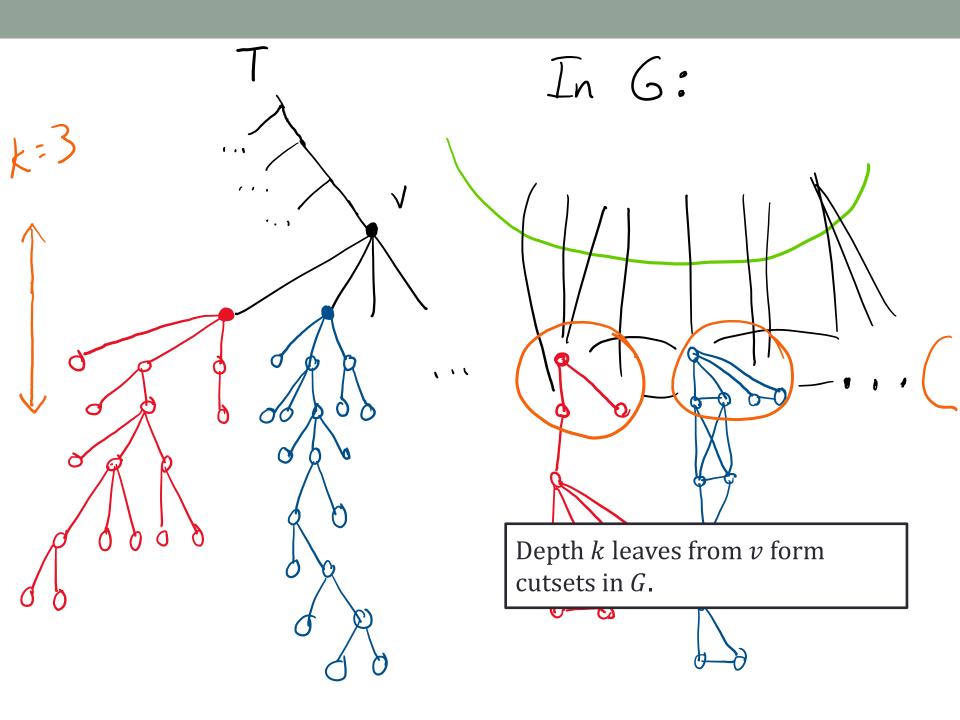
children

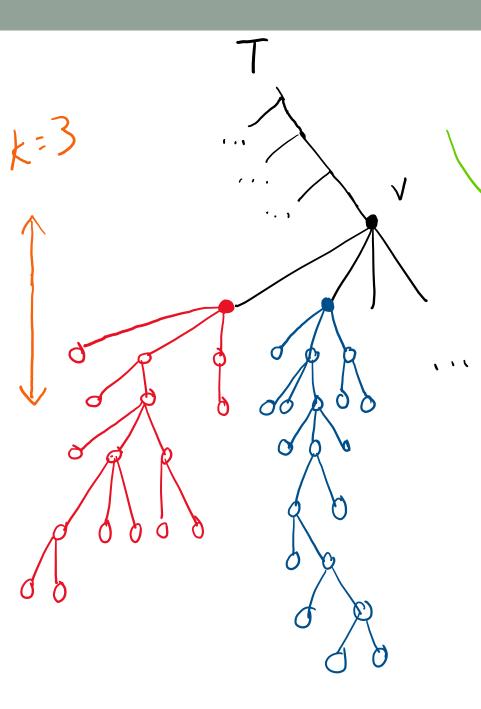
- Leaves in these depth k subtrees form cutsets in G.
- Each cutset has size at most d^k .
- These cutsets are organized into layers determined by their distance to v.
- Same distance = same neighbors "above" v.

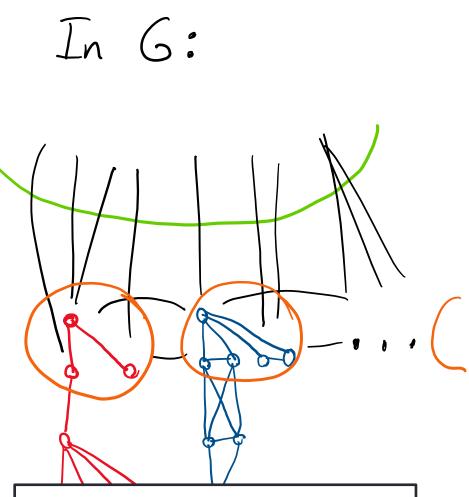


- Leaves in these depth k subtrees form cutsets in G.
- Each cutset has size at most d^k.
- These cutsets are organized into layers determined by their distance to v.
- Same distance = same neighbors "above" v.

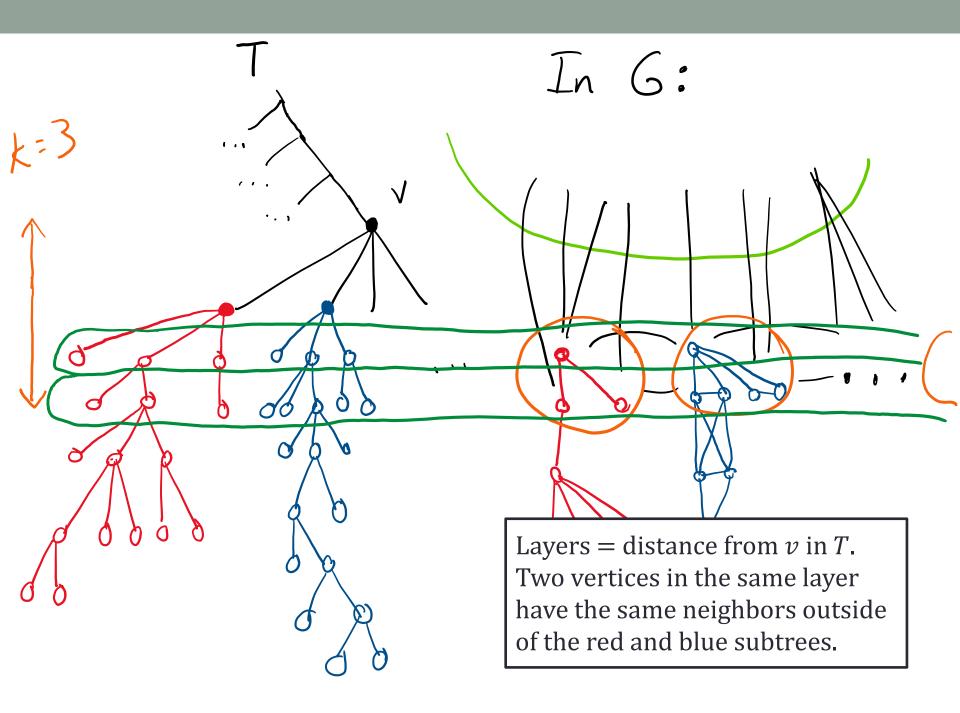






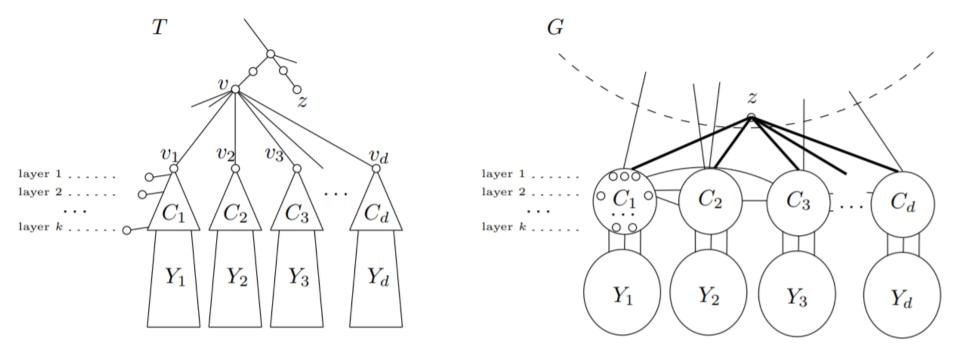


Each cutset has size at most d^k because they are in a subtree of degree at most d.



Lemma

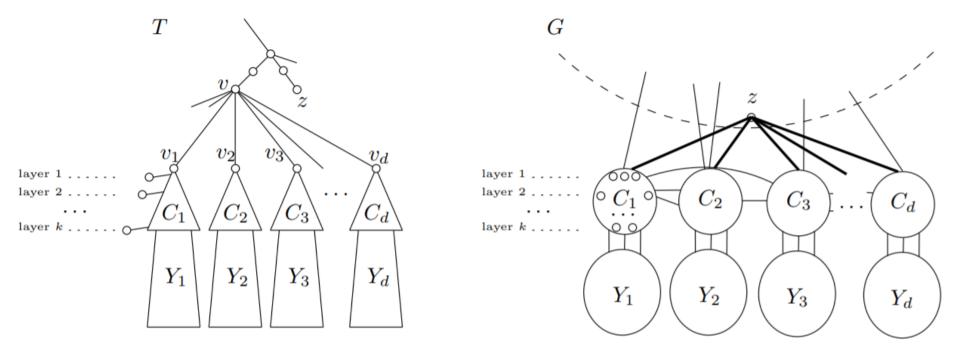
If *G* has a *k*-leaf root of maximum degree > *d*, then there exist disjoint $C_1 \cup Y_1, ..., Cd \cup Yd$ pairwise-similar subsets. Also, each C_i has size $\leq dk$.



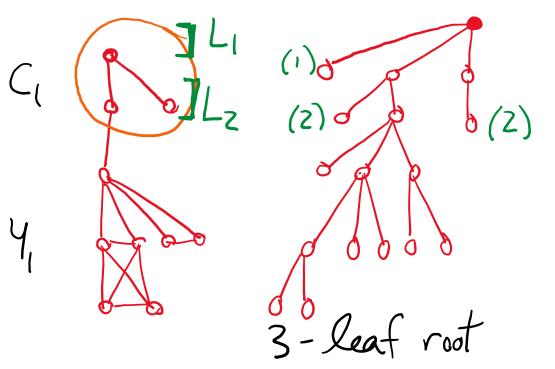
Lemma

If *G* has a *k*-leaf root of maximum degree > *d*, then there exist disjoint $C_1 \cup Y_1, ..., Cd \cup Yd$ pairwise-similar subsets. Also, each C_i has size $\leq dk$.

- So we can find many subsets with the same neighborhood structure.
- Next : find two among those that have the "same" k-leaf roots.



- Let $C_1 \cup Y_1$ be a set of vertices organized into layers L_1, \dots, Lk .
- Let T_1 be a *k*-leaf root of $G[C_1 \cup Y_1]$. The **layer-encoding** of T_1 is obtained by
 - restricting T_1 to C_1 and their ancestors
 - replacing each leaf of C_1 by its layer number.
 - labeling internal nodes by the distance to its closest Y_1 leaf
 - keeping at most 2 copies of each identical child subtree (see paper)



- Let $C_1 \cup Y_1$ be a set of vertices organized into layers L_1, \dots, Lk .
- Let T_1 be a *k*-leaf root of $G[C_1 \cup Y_1]$. The **layer-encoding** of T_1 is obtained by
 - restricting T_1 to C_1 and their ancestors
 - replacing each leaf of C_1 by its layer number.
 - labeling internal nodes by the distance to its closest Y_1 leaf
 - keeping at most 2 copies of each identical child subtree (see paper)

Encoded 3-look ro

- Let $C_1 \cup Y_1$ be a set of vertices organized into layers L_1, \dots, Lk .
- Let T_1 be a *k*-leaf root of $G[C_1 \cup Y_1]$. The **layer-encoding** of T_1 is obtained by
 - restricting T_1 to C_1 and their ancestors
 - replacing each leaf of C_1 by its layer number.
 - labeling internal nodes by the distance to its closest Y_1 leaf
 - keeping at most 2 copies of each identical child subtree (see paper)

Lemma

The number of possible layer-encoded k-leaf roots is at most s(k), a function that depends only on k.

$$\begin{array}{c}
3k \\
3k \\
3k \\
3k \\
s(k) \simeq 3k \\
3k \\
s(k) \simeq 3k \\
3k \\
s(k) \simeq 3k \\
s(k)$$

Lemma

The number of possible layer-encoded k-leaf roots is at most s(k), a function that depends only on k.

Lemma

The number of possible layer-encoded k-leaf roots is at most s(k), a function that depends only on k.

- So what?
- Let $C_1 \cup Y_1$ be a set of vertices organized into layers L_1, \dots, Lk .
- Let S(C₁ ∪ Y₁) be the set of layer-encoded k-leaf roots that encode some k-leaf root of G[C₁ ∪ Y₁].

Lemma

If *G* admits a *k*-leaf root of maximum degree $d > 2^{s(k)}$, then *G* contains two similar subsets $C_1 \cup Y_1$, $C_2 \cup Y_2$ such that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$.

Lemma

If *G* admits a *k*-leaf root of maximum degree $d > 2^{s(k)}$, then *G* contains two similar subsets $C_1 \cup Y_1$, $C_2 \cup Y_2$ such that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$.

Lemma

If *G* admits a *k*-leaf root of maximum degree $d > 2^{s(k)}$, then *G* contains two similar subsets $C_1 \cup Y_1$, $C_2 \cup Y_2$ such that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$.

- Proof idea.
- There are s(k) layer-encoded k-leaf roots, and so $2^{s(k)}$ possible values for $S(Ci \cup Yi)$.
- If G has a *k*-leaf root with $d > 2^{s(k)}$, we know that we can find $> 2^{s(k)}$ pairwise similar subsets.
- By the pigeonhle principle, $S(Ci \cup Y_i) = S(C_j \cup Y_j)$ holds for two of them.
 - (just reindex them so that i = 1, j = 2)

So far, we know that:

Lemma

If *G* admits a *k*-leaf root of maximum degree $d > 2^{s(k)}$, then *G* contains two similar subsets $C_1 \cup Y_1$, $C_2 \cup Y_2$ such that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$.

This is useful because:

Lemma Let $C_1 \cup Y_1, C_2 \cup Y_2$ be similar subsets and assume that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$. Then *G* is a *k*-leaf power if and only if $G - (C_1 \cup Y_1)$ is a *k*-leaf power.

Lemma

Let $C_1 \cup Y_1, C_2 \cup Y_2$ be similar subsets and assume that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$. Then *G* is a *k*-leaf power if and only if $G - (C_1 \cup Y_1)$ is a *k*-leaf power.

Lemma

Let $C_1 \cup Y_1, C_2 \cup Y_2$ be similar subsets and assume that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$. Then *G* is a *k*-leaf power if and only if $G - (C_1 \cup Y_1)$ is a *k*-leaf power.

- Proof idea.
- If $G (C_1 \cup Y_1)$ is not a k-leaf power, then neither is G. So assume that $G (C_1 \cup Y_1)$ has a k-leaf root T.
- Look at $T_2 = (T \text{ restricted to } C_2 \cup Y_2)$. Now, $C_1 \cup Y_1$ admits a k-leaf root T_1 with the same layer-encoding as T_2 .
- Embed T_1 into T by mimicking T_2 . The result is a k-leaf power of G.
- This works because $C_1 \cup Y_1$ and $C_2 \cup Y_2$ are layered similarly, and because layer-encoding capture all relevant neighborhood and distance information.

Lemma

If *G* admits a *k*-leaf root of maximum degree $d > 2^{s(k)}$, then *G* contains two similar subsets $C_1 \cup Y_1$, $C_2 \cup Y_2$ such that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$.

Lemma

Let $C_1 \cup Y_1, C_2 \cup Y_2$ be similar subsets and assume that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$. Then *G* is a *k*-leaf power if and only if $G - (C_1 \cup Y_1)$ is a *k*-leaf power.

Lemma

If *G* admits a *k*-leaf root of maximum degree $d > 2^{s(k)}$, then *G* contains two similar subsets $C_1 \cup Y_1$, $C_2 \cup Y_2$ such that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$.

Lemma

Let $C_1 \cup Y_1, C_2 \cup Y_2$ be similar subsets and assume that $S(C_1 \cup Y_1) = S(C_2 \cup Y_2)$. Then *G* is a *k*-leaf power if and only if $G - (C_1 \cup Y_1)$ is a *k*-leaf power.

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

Finding the redundant C

- To find the redundant $C = C_1 \cup Y_1$:
 - Enumerate every subset C_1 , ..., C_d of size at most at most d^k each, where $d = 2^{s(k)}$. This most time-consuming part takes $O(n^{2^{s(k)}})$.
 - Find the Y_i 's by looking at G Ci.
 - Check if the $C_i \cup Y_i$ form pairwise-similar sets (brute force every layering).
 - For each $C_i \cup Y_i$, compute the set of layer-encoded *k*-leaf roots to obtain $S(Ci \cup Y_i)$. This can be done by DP on the tree decomposition.
 - Find two equal $S(Ci \cup Y_i)$ sets.

Wrapping it up

- If *G* admits a *k*-leaf root of low degree, "easy".
- If *G* has a *k*-leaf root *T* of high degree *d*:
 - High degree node of *T* implies many similarly layered $C_i \cup Y_i$'s
 - We can layer-encode the *k*-leaf roots of each $C_i \cup Y_i$
 - There are *s*(*k*) possible layer-encoded *k*-leaf roots.
 - If *d* is large enough, two $C_i \cup Y_i$ and $C_j \cup Y_j$ admit the same layerencoded *k*-leaf roots.
 - If this is the case, $C_i \cup Y_i$ is redundant because it can mimick $C_j \cup Y_j$. We can remove it without losing information.

What's next?

- Can the ridiculous $n^{f(k)}$ complexity be improved? Or is the power tower behavior necessary?
- Is k-leaf power recognition FPT in k? i.e. f(k) * poly(n) algorithm?
- Techniques applicable to leaf powers? (not sure)
- Techniques applicable to other tree-definable graph classes?
 e.g. PCGs with bounded interval.
- Graph-theoretical characterization of k-leaf powers?
 ad hoc analysis for low degree, higher degree = redundancy

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that G is a k-leaf power if and only if G - C is a k-leaf power.

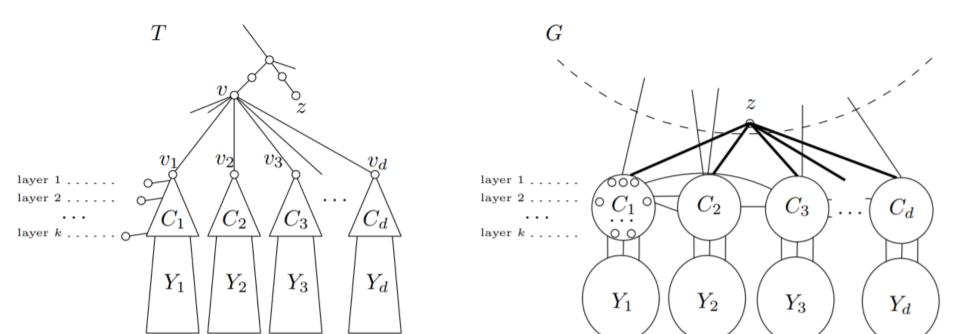
Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

This is proved as follows:

- Show that if a k-leaf root has degree > d, one can find subsets C1 U Y1, ..., Cd U Yd, such that Ci cuts Yi from the rest of G.
- 2. Moreover, C1 U C2 U ... U Cd can be partitioned into layers that have the same neighborhood in G (C1 U Y1 U ... U Cd U Yd).
- 3. Moreover again, G[C1 U Y1] admits the same set of encoded k-leaf roots as some G[Ci U Yi] (to be defined).
- 4. Find a k-leaf root T of G (C1 U Y1). If none exists, we are done. Otherwise, look at how Ci U Yi is organized in T. By (3), C1 U Y1 allows the same k-leaf root organization. We embed C1 U Y1 into T by mimicking C2 U Y2. By (2), this works.

This is proved as follows:

- 1. Show that if a k-leaf root has degree > *d*, one can find subsets C1 U Y1, ..., Cd U Yd, such that Ci cuts Yi from the rest of G.
- 2. Moreover, C1 U C2 U ... U Cd can be partitioned into layers that have the same neighborhood in G (C1 U Y1 U ... U Cd U Yd).
- 3. If d is large, some G[Ci U Yi] and G[Cj U Yj] admit the same set of encoded k-leaf roots (to be defined).
- 4. Find a k-leaf root T of G (Ci U Yi). Look at how Cj U Yj is organized in T. By (3), Ci U Yi allows the same k-leaf root organization. We embed Ci U Yi into T by mimicking Cj U Yj. By (2), this works.



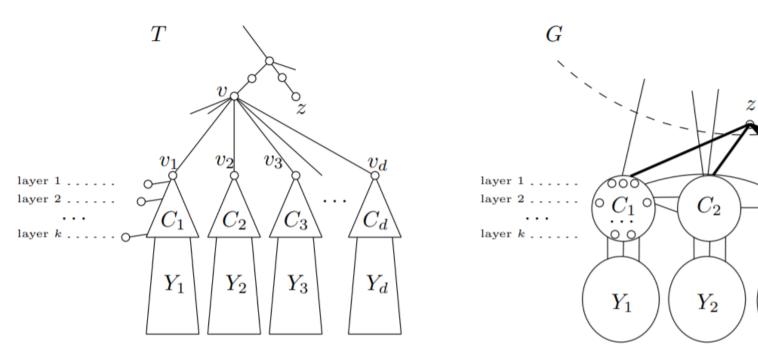
k-leaf roots with high degree

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then G contains a subset C of vertices such that **G** is a k-leaf power if and only if G - C is a k-leaf power.

Moreover, *C* can be found in time $O(n^{f(k)})$ if it exists.

- T = leaf root of G
- v = lowest max of degree >d
- z = closest leaf to v
- Ci = subtrees at distance <= k from v
- Layer j = leaves at distance j from v



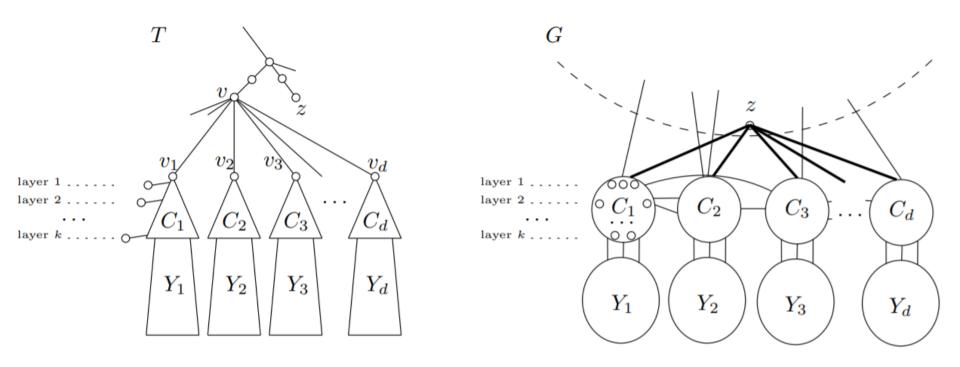
 C_d

 Y_d

 C_3

 Y_3

 Of course, we don't have *T*. Still, by brute-force we can find the *C_i*'s and *Y_i*'s that satisfy the cutset, size and layering properties. This is feasible since the *C_i*'s have bounded size.



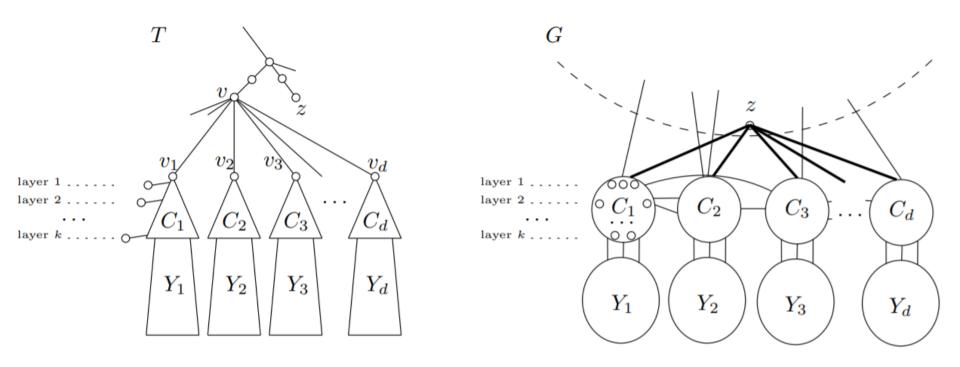
- **3.1** Similar structures A similar structure of a graph G is a tuple S = (C, Y, z, L) where:
 - $C = \{C_1, \ldots, C_d\}$ is a collection of $d \ge 2$ pairwise disjoint, non-empty subsets of vertices of G;
 - *Y* = {*Y*₁,...,*Y_d*} is a collection of pairwise disjoint subsets of vertices of *G*, some of which are possibly empty. Also, *C_i* ∩ *Y_j* = Ø for any *i*, *j* ∈ [*d*];
 - z ∈ V(G) and does not belong to any subset of C or Y;
 - $\mathcal{L} = \{\ell_1, \ldots, \ell_d\}$ is a set of functions where, for each $i \in [d]$, we have $\ell_i : C_i \cup \{z\} \to \{0, 1, \ldots, k\}$. The functions in \mathcal{L} are called *layering functions*.

Additionally, S must satisfy several conditions. Let us denote $C^* = \bigcup_{i \in [d]} C_i$. Let $X = \{X_1, \ldots, X_t\}$ be the connected components of $G - C^*$. For each $i \in [d]$, denote $X^{(i)} = \{X_j \in X : N_G(X_j) \subseteq C_i\}$, i.e. the components that have neighbors only in C_i .

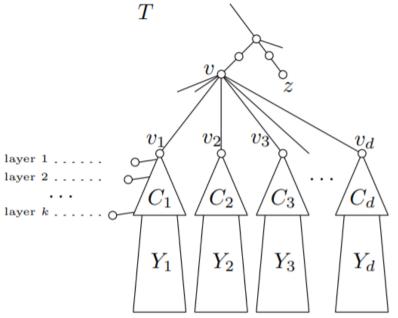
Then all the following conditions must hold:

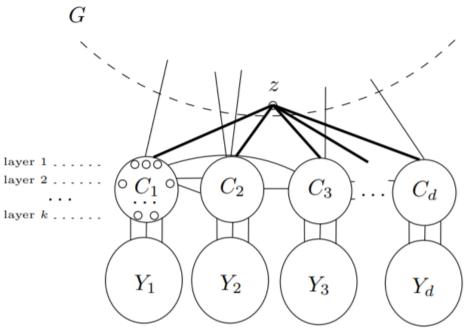
- 1. for each $i \in [d]$, $Y_i = \bigcup_{X_i \in X^{(i)}} X_j$ ($Y_i = \emptyset$ is possible);
- 2. there is exactly one connected component $X_z \in X$ such that for all $i \in [d]$, $N_G(X_z) \cap C_i \neq \emptyset$. Moreover, $z \in X_z$ and $C^* \subseteq N_G(z)$;
- 3. for all $X_j \in X \setminus \{X_z\}, X_j \subseteq Y_i$ for some $i \in [d]$. In particular, X_z is the only connected component of $G C^*$ with neighbors in two or more C_i 's;
- 4. the layering functions L satisfy the following:
 - (a) for each $i \in [d]$, $\ell_i(z) = 0$. Moreover, $\ell_i(x) > 0$ for any $x \in C_i$;
 - (b) for any $i, j \in [d]$ and any $x \in C_i, y \in C_j, \ \ell_i(x) = \ell_j(y)$ implies $N_G(x) \setminus (C_i \cup Y_i \cup C_j \cup Y_j) = N_G(y) \setminus (C_i \cup Y_i \cup C_j \cup Y_j)$. Note that this includes the case i = j;
 - (c) for any $i, j \in [d]$ and any $x \in C_i, y \in C_j, \ell_i(x) + \ell_j(y) \le k$ implies $xy \in E(G)$. Note that this includes the case i = j.
 - (d) for any two distinct $i, j \in [d]$ and any $x \in C_i, y \in C_j, \ell_i(x) + \ell_j(y) > k$ implies $xy \notin E(G)$. Note that this does not include the case i = j

 Of course, we don't have *T*. Still, by brute-force we can find the *C_i*'s and *Y_i*'s that satisfy the cutset, size and layering properties. This is feasible since the *C_i*'s have bounded size.



- Of course, we don't have *T*. Still, by brute-force we can find the *C_i*'s and *Y_i*'s that satisfy the cutset, size and layering properties. This is feasible since the *C_i*'s have bounded size.
- Look at the k-leaf roots of each G[Ci U Yi].
- WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set of layer-encoded k-leaf roots.





• WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set of layer-encoded k-leaf roots.

