
RECOGNIZING K-LEAF POWERS IN 
POLYNOMIAL TIME, FOR CONSTANT K

Manuel Lafond, Université de Sherbrooke, Canada



Definition
A graph 𝐺 is a 𝒌-leaf power if there exists a tree 𝑇 such that:
- 𝑳 𝑻 = 𝑽(𝑮), where 𝐿(𝑇) is the set of leaves of 𝑇
- 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌
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Definition
A graph 𝐺 is a 𝒌-leaf power if there exists a tree 𝑇 such that:
- 𝑳 𝑻 = 𝑽(𝑮), where 𝐿(𝑇) is the set of leaves of 𝑇
- 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌

Equivalently, 𝐺 is a 𝑘-leaf power if it can be obtained by taking the 𝑘-th power 
of a tree, and taking the subgraph induced by the leaves of the tree.



Definition
A graph 𝐺 is a 𝒌-leaf power if there exists a tree 𝑇 such that:
- 𝑳 𝑻 = 𝑽(𝑮), where 𝐿(𝑇) is the set of leaves of 𝑇
- 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌

Open problems [Nishimura, Ragde, Thilikos, 2002]

- Characterize 𝑘-leaf powers, for every 𝑘. 

- Characterize leaf powers, the union of 𝑘-leaf powers for all 𝑘. 

- Is recognizing leaf powers in P? 

- For fixed 𝑘, is recognizing 𝑘-leaf powers in P? 



Open problems [Nishimura, Ragde, Thilikos, 2002]

- Characterize 𝑘-leaf powers, for every 𝑘. OPEN

- Characterize leaf powers, the union of 𝑘-leaf powers for all 𝑘. OPEN

- Is recognizing leaf powers in P? OPEN

- For fixed 𝑘, is recognizing 𝑘-leaf powers in P? YES, THIS TALK

Definition
A graph 𝐺 is a 𝒌-leaf power if there exists a tree 𝑇 such that:
- 𝑳 𝑻 = 𝑽(𝑮), where 𝐿(𝑇) is the set of leaves of 𝑇
- 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌



Theorem
There is an algorithm that, given a graph 𝐺, decides whether 𝐺 is a 𝑘-leaf

power in time 𝑂(𝑛𝑓(𝑘)), where 𝑛 = |𝑉(𝐺)| and 𝑓 is a function that
depends only on 𝑘.
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Relevance
- Many papers on leaf powers, slow progress.  Few results apply to all 𝑘.
- Several similar tree-definable graph classes.  Techniques developed here 
might be applicable to them.
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Known results

- 2-leaf powers = P3-free graphs  [folklore]

- 3-leaf powers = chordal + (bull, gem, dart)-free graphs 
[Rautenbach, Disc Maths 2006]

- 4-leaf powers = chordal + X-free, where X is a finite set of 
forbidden subgraphs [Brandstädt et al., TALG 2008]

- 5-leaf powers recognition in P [Chang & Ko, WG 2007]

- 6-leaf powers recognition in P [Ducoffe,  WG 2019]

- Recognizing 𝑘-leaf powers is FPT in k + degeneracy(G), 
and FPT in k + treewidth(G). [Eppstein & Havvaei, IPEC 
2018]



Known results

- Leaf power = graphs that are 𝑘-leaf powers for some 𝑘.

- All leaf powers are chordal, and also strongly chordal

- Converse not true [L, WG2017; Jaffke & al., TCS2019]

- Subclasses of strongly chordal (interval, rooted directed, 
ptolemaic) graphs are easy to recognize [Brandstädt et al., 
LATIN2008 & DiscMath2010]

- Leaf powers have mim-width 1 [Jaffke & al., TCS2019]

- Leaf powers with star NeS models in P [Bergougnoux, 
2021]



Other tree-definable classes

• Many other tree-to-graph representations, all with similar 
open problems

• Pairwise compatiblity graphs (PCG)

• 𝑢𝑣 edge iff distance in interval [𝑙, ℎ]

• k-interval PCGs, OR-PCGs and AND-PCGs

• Allow 𝑘-intervals, union/intersection of PCGs

• Orthology graphs

• 𝑢𝑣 edge iff lca has label 1

• Fitch graphs

• 𝑢𝑣 edge iff some edge on 𝑢 − 𝑣 path has label 1

• Best match graphs

• …



Theorem
There is an algorithm that, given a graph 𝐺, decides whether 𝐺 is a 𝑘-leaf

power in time 𝑂(𝑛𝑓(𝑘)), where 𝑛 = |𝑉(𝐺)| and 𝑓 is a function that
depends only on 𝑘.



High-level overview

• Given a graph 𝐺, we must decide whether 𝐺 is a 𝑘-leaf power 
(assume that 𝑘 is fixed).
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High-level overview

For 𝐺 a 𝑘-leaf power, a 𝒌-leaf root of 𝑮 is a tree with 𝑳(𝑻) = 𝑽(𝑮)
satisfying 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌.
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Theorem (from Eppstein & Havvaei, 2019)
There is a function 𝑔 such that one can decide in time O(𝑔 𝑡𝑤 𝐺 , 𝑘 𝑛)
whether 𝐺 is a 𝑘-leaf power, where 𝑡𝑤(𝐺) is the treewidth of 𝐺.

For 𝐺 a 𝑘-leaf power, a 𝒌-leaf root of 𝑮 is a tree with 𝑳(𝑻) = 𝑽(𝑮)
satisfying 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌.
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Theorem 
Let 𝑑, 𝑘 be integers.  Then one can decide in time O(𝑔 𝑑𝑘, 𝑘 𝑛) whether a 
graph 𝐺 admits a 𝑘-leaf root of maximum degree 𝒅. 

For 𝐺 a 𝑘-leaf power, a 𝒌-leaf root of 𝑮 is a tree with 𝑳(𝑻) = 𝑽(𝑮)
satisfying 𝒖𝒗 ∈ 𝑬 𝑮 ⇔ 𝒅𝒊𝒔𝒕𝑻 𝒖, 𝒗 ≤ 𝒌.



• Proof idea.

• If G admits a 𝑘-leaf root of max degree 𝑑, then 𝐺 has 
maximum degree 𝑑𝑘. 

Theorem 
Let 𝑑, 𝑘 be integers.  Then one can decide in time O(𝑔 𝑑𝑘, 𝑘 𝑛) whether a 
graph 𝐺 admits a 𝑘-leaf root of maximum degree 𝒅. 



• Proof idea.

• If G admits a 𝑘-leaf root of max degree 𝑑, then 𝐺 has 
maximum degree 𝑑𝑘.  

• In chordal graphs, we have 𝑡𝑤(𝐺) = 𝑤(𝐺) – 1 ≤ 𝑑𝑘.
• tw(G) = treewidth, w(G) = clique number

• Use Eppstein & Havvaei to decide in time 
𝑂 𝑔 𝑡𝑤 𝐺 , 𝑘 𝑛 = 𝑂(𝑔 𝑑𝑘, 𝑘 𝑛) whether 𝐺 is a 𝑘-leaf 
power.

Theorem 
Let 𝑑, 𝑘 be integers.  Then one can decide in time O(𝑔 𝑑𝑘, 𝑘 𝑛) whether a 
graph 𝐺 admits a 𝑘-leaf root of maximum degree 𝒅. 



• If 𝑑 is a function of 𝑘, problem solved.

• Bottom-line : the difficulty resides in 𝑘-leaf roots of high 
maximum degree. 

Theorem 
Let 𝑑, 𝑘 be integers.  Then one can decide in time O(𝑔 𝑑𝑘, 𝑘 𝑛) whether a 
graph 𝐺 admits a 𝑘-leaf root of maximum degree 𝒅. 



𝑘-leaf roots with high degree

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then 
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if  
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘 ) if it exists.



𝑘-leaf roots with high degree

This says that if 𝐺 has high-degree 𝑘-leaf roots, then 𝐺 has a redundant 
subset of vertices 𝐶 that can be found and pruned quickly.

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then 
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if  
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘 ) if it exists.



𝑘-leaf roots with high degree

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then 
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if  
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘 ) if it exists.

The algorithm:
1) Check if 𝐺 admits a 𝑘-leaf root of degree at most 𝑑 = 𝑓(𝑘).  If yes, return “yes”.
2) Otherwise, check if 𝐺 contains 𝐶 as described above.  If not, return “no”.
3) Otherwise, repeat on 𝐺 – 𝐶.

Finishes in polynomial time, since 𝑘 is fixed and this is repeated at most 𝑛 times.



𝑘-leaf roots with high degree

This says that if 𝐺 has high-degree 𝑘-leaf roots, then 𝐺 has a redundant 
subset of vertices 𝐶 that can be found and pruned quickly.

Step 1 : find lots of subsets 𝐶𝑖 ∪ 𝑌𝑖 such that the 𝐶𝑖’s are cutsets, and all have 
the same neighborhood structure.
Step 2 : argue that two of those 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 admits the “same” 𝑘-leaf 
roots.
Step 3 : argue that 𝐶1 ∪ 𝑌1 can be removed since it behaves like 𝐶2 ∪ 𝑌2

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then 
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if  
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘 ) if it exists.



Similar sets of vertices
• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that 
vertices in the same layer have the same neighbors in 
𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).
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Similar sets of vertices
• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that 
vertices in the same layer have the same neighbors in 
𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).



Similar sets of vertices

Lemma
If 𝐺 has a 𝑘-leaf root of maximum degree > 𝑑, then there exist 
disjoint 𝐶1 ∪ 𝑌1, … , 𝐶𝑑 ∪ 𝑌𝑑 pairwise-similar subsets.  Also, each 
𝐶𝑖 has size ≤ 𝑑𝑘.

• We say that 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 ⊆ 𝑉(𝐺) are similar if

• 𝐶1 cuts 𝑌1 and 𝐶2 cuts 𝑌2 from the rest of the graph

• 𝐶1 ∪ 𝐶2 can be partitioned into layers 𝐿1, … , 𝐿𝑘 such that 
vertices in the same layer have the same neighbors in 
𝐺 – (𝐶1 ∪ 𝑌1 ∪ 𝐶2 ∪ 𝑌2).



Assume 𝑇 is rooted.  Let 𝑣
be a lowest node of degree 
> 𝑑.



Assume 𝑇 is rooted.  Let 𝑣
be a lowest node of degree 
> 𝑑.



- Leaves in these depth k 
subtrees form cutsets in G.

- Each cutset has size at most 
𝑑𝑘.

- These cutsets are organized 
into layers determined by 
their distance to v.

- Same distance = same 
neighbors “above” v.



- Leaves in these depth k 
subtrees form cutsets in G.

- Each cutset has size at most 
𝑑𝑘.

- These cutsets are organized 
into layers determined by 
their distance to v.

- Same distance = same 
neighbors “above” v.





Depth 𝑘 leaves from 𝑣 form
cutsets in 𝐺.



Each cutset has size at most 𝑑𝑘

because they are in a subtree of 
degree at most 𝑑.



Layers = distance from 𝑣 in 𝑇.
Two vertices in the same layer 
have the same neighbors outside
of the red and blue subtrees.



Lemma
If 𝐺 has a 𝑘-leaf root of maximum degree > 𝑑, then there exist 
disjoint 𝐶1 ∪ 𝑌1, … , 𝐶𝑑 ∪ 𝑌𝑑 pairwise-similar subsets.  Also, each 
𝐶𝑖 has size ≤ 𝑑𝑘.



• So we can find many subsets with the same neighborhood 
structure.

• Next : find two among those that have the “same” 𝑘-leaf roots.

Lemma
If 𝐺 has a 𝑘-leaf root of maximum degree > 𝑑, then there exist 
disjoint 𝐶1 ∪ 𝑌1, … , 𝐶𝑑 ∪ 𝑌𝑑 pairwise-similar subsets.  Also, each 
𝐶𝑖 has size ≤ 𝑑𝑘.



Similar sets with the same leaf roots
• Let 𝐶1 ∪ 𝑌1 be a set of vertices organized into layers 𝐿1, … , 𝐿𝑘.

• Let 𝑇1 be a 𝑘-leaf root of G[𝐶1 ∪ 𝑌1].  The layer-encoding of 𝑇1 is obtained by

• restricting 𝑇1 to 𝐶1 and their ancestors 

• replacing each leaf of 𝐶1 by its layer number.

• labeling internal nodes by the distance to its closest 𝑌1 leaf

• keeping at most 2 copies of each identical child subtree (see paper)
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• restricting 𝑇1 to 𝐶1 and their ancestors 

• replacing each leaf of 𝐶1 by its layer number.
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Similar sets with the same leaf roots

Lemma
The number of possible layer-encoded 𝑘-leaf roots is at most 𝑠(𝑘), a 
function that depends only on 𝑘. 

𝒔 𝒌 ≃ 𝟑𝒌
𝟑𝒌

𝟑𝒌
𝟑𝒌

𝟑𝒌…
𝒌 times

• Let 𝐶1 ∪ 𝑌1 be a set of vertices organized into layers 𝐿1, … , 𝐿𝑘.

• Let 𝑇1 be a 𝑘-leaf root of G[𝐶1 ∪ 𝑌1].  The layer-encoding of 𝑇1 is obtained by

• restricting 𝑇1 to 𝐶1 and their ancestors 

• replacing each leaf of 𝐶1 by its layer number.

• labeling internal nodes by the distance to its closest 𝑌1 leaf

• keeping at most 2 copies of each identical child subtree (see paper)



Similar sets with the same leaf roots
Lemma
The number of possible layer-encoded 𝑘-leaf roots is at most 𝑠(𝑘), a 
function that depends only on 𝑘. 



Similar sets with the same leaf roots

• So what?

• Let 𝐶1 ∪ 𝑌1 be a set of vertices organized into layers 𝐿1, … , 𝐿𝑘.

• Let 𝑆(𝐶1 ∪ 𝑌1) be the set of layer-encoded 𝑘-leaf roots that encode some 
𝑘-leaf root of G[𝐶1 ∪ 𝑌1].

Lemma

If 𝐺 admits a 𝑘-leaf root of maximum degree 𝑑 > 2𝑠(𝑘), then 𝐺 contains 
two similar subsets 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 such that 𝑆(𝐶1 ∪ 𝑌1) = 𝑆(𝐶2 ∪ 𝑌2).

Lemma
The number of possible layer-encoded 𝑘-leaf roots is at most 𝑠(𝑘), a 
function that depends only on 𝑘. 



Similar sets with the same leaf roots
Lemma

If 𝐺 admits a 𝑘-leaf root of maximum degree 𝑑 > 2𝑠(𝑘), then 𝐺 contains 
two similar subsets 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 such that 𝑆(𝐶1 ∪ 𝑌1) = 𝑆(𝐶2 ∪ 𝑌2).



Similar sets with the same leaf roots

• Proof idea.

• There are 𝑠(𝑘) layer-encoded k-leaf roots, and so 2𝑠(𝑘)

possible values for 𝑆(𝐶𝑖 ∪ 𝑌𝑖).

• If G has a 𝑘-leaf root with 𝑑 > 2𝑠(𝑘), we know that we can 
find > 2𝑠(𝑘) pairwise similar subsets.

• By the pigeonhle principle, 𝑆(𝐶𝑖 ∪ 𝑌𝑖) = 𝑆(𝐶𝑗 ∪ 𝑌𝑗) holds
for two of them.  
• (just reindex them so that 𝑖 = 1, 𝑗 = 2)

Lemma

If 𝐺 admits a 𝑘-leaf root of maximum degree 𝑑 > 2𝑠(𝑘), then 𝐺 contains 
two similar subsets 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 such that 𝑆(𝐶1 ∪ 𝑌1) = 𝑆(𝐶2 ∪ 𝑌2).



Similar sets with the same leaf roots
So far, we know that:

Lemma
Let 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 be similar subsets and assume that 𝑆(𝐶1 ∪ 𝑌1) =
𝑆(𝐶2 ∪ 𝑌2).  

Then 𝐺 is a 𝑘-leaf power if and only if 𝐺 – (𝐶1 ∪ 𝑌1) is a 𝑘-leaf power.

This is useful because:

Lemma

If 𝐺 admits a 𝑘-leaf root of maximum degree 𝑑 > 2𝑠(𝑘), then 𝐺 contains 
two similar subsets 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 such that 𝑆(𝐶1 ∪ 𝑌1) = 𝑆(𝐶2 ∪ 𝑌2).



Similar sets with the same leaf roots
Lemma
Let 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 be similar subsets and assume that 𝑆(𝐶1 ∪ 𝑌1) =
𝑆(𝐶2 ∪ 𝑌2).  

Then 𝐺 is a 𝑘-leaf power if and only if 𝐺 – (𝐶1 ∪ 𝑌1) is a 𝑘-leaf power.



• Proof idea.

• If 𝐺 – (𝐶1 ∪ 𝑌1) is not a k-leaf power, then neither is 𝐺.  So 
assume that 𝐺 – (𝐶1 ∪ 𝑌1) has a 𝑘-leaf root 𝑇.  

• Look at 𝑇2 = (𝑇 restricted to 𝐶2 ∪ 𝑌2).  Now, 𝐶1 ∪ 𝑌1 admits a 
𝑘-leaf root 𝑇1 with the same layer-encoding as 𝑇2. 

• Embed 𝑇1 into 𝑇 by mimicking 𝑇2.  The result is a 𝑘-leaf 
power of 𝐺.  

• This works because 𝐶1 ∪ 𝑌1 and 𝐶2 ∪ 𝑌2 are layered 
similarly, and because layer-encoding capture all relevant 
neighborhood and distance information.

Similar sets with the same leaf roots
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Let 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 be similar subsets and assume that 𝑆(𝐶1 ∪ 𝑌1) =
𝑆(𝐶2 ∪ 𝑌2).  

Then 𝐺 is a 𝑘-leaf power if and only if 𝐺 – (𝐶1 ∪ 𝑌1) is a 𝑘-leaf power.



Similar sets with the same leaf roots
Lemma

If 𝐺 admits a 𝑘-leaf root of maximum degree 𝑑 > 2𝑠(𝑘), then 𝐺 contains 
two similar subsets 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 such that 𝑆(𝐶1 ∪ 𝑌1) = 𝑆(𝐶2 ∪ 𝑌2).

Lemma
Let 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 be similar subsets and assume that 𝑆(𝐶1 ∪ 𝑌1) =
𝑆(𝐶2 ∪ 𝑌2).  

Then 𝐺 is a 𝑘-leaf power if and only if 𝐺 – (𝐶1 ∪ 𝑌1) is a 𝑘-leaf power.



Similar sets with the same leaf roots

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then 
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if  
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘 ) if it exists.

Lemma

If 𝐺 admits a 𝑘-leaf root of maximum degree 𝑑 > 2𝑠(𝑘), then 𝐺 contains 
two similar subsets 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 such that 𝑆(𝐶1 ∪ 𝑌1) = 𝑆(𝐶2 ∪ 𝑌2).

Lemma
Let 𝐶1 ∪ 𝑌1, 𝐶2 ∪ 𝑌2 be similar subsets and assume that 𝑆(𝐶1 ∪ 𝑌1) =
𝑆(𝐶2 ∪ 𝑌2).  

Then 𝐺 is a 𝑘-leaf power if and only if 𝐺 – (𝐶1 ∪ 𝑌1) is a 𝑘-leaf power.



Finding the redundant C

• To find the redundant 𝐶 = 𝐶1 ∪ 𝑌1:
• Enumerate every subset C1, …, Cd of size at most at most 𝑑𝑘 each, 

where 𝑑 = 2𝑠(𝑘).  This most time-consuming part takes 𝑂(𝑛2𝑠(𝑘)
).

• Find the 𝑌𝑖’s by looking at 𝐺 – 𝐶𝑖.

• Check if the 𝐶𝑖 ∪ 𝑌𝑖 form pairwise-similar sets (brute force every 
layering).

• For each 𝐶𝑖 ∪ 𝑌𝑖, compute the set of layer-encoded 𝑘-leaf roots to 
obtain 𝑆(𝐶𝑖 ∪ 𝑌𝑖). This can be done by  DP on the tree decomposition.

• Find two equal 𝑆(𝐶𝑖 ∪ 𝑌𝑖) sets.



Wrapping it up

• If 𝐺 admits a 𝑘-leaf root of low degree, “easy”.

• If 𝐺 has a 𝑘-leaf root 𝑇 of high degree 𝑑:
• High degree node of 𝑇 implies many similarly layered 𝐶𝑖 ∪ 𝑌𝑖’s

• We can layer-encode the 𝑘-leaf roots of each 𝐶𝑖 ∪ 𝑌𝑖

• There are 𝑠(𝑘) possible layer-encoded 𝑘-leaf roots.

• If 𝑑 is large enough, two 𝐶𝑖 ∪ 𝑌𝑖 and 𝐶𝑗 ∪ 𝑌𝑗 admit the same layer-
encoded 𝑘-leaf roots.

• If this is the case, 𝐶𝑖 ∪ 𝑌𝑖 is redundant because it can mimick 𝐶𝑗 ∪ 𝑌𝑗.  
We can remove it without losing information.



What’s next?

• Can the ridiculous 𝑛𝑓(𝑘) complexity be improved?  Or is the 
power tower behavior necessary?

• Is 𝑘-leaf power recognition FPT in 𝑘?  i.e. 𝑓 𝑘 ∗ 𝑝𝑜𝑙𝑦(𝑛)
algorithm?

• Techniques applicable to leaf powers?  (not sure)

• Techniques applicable to other tree-definable graph classes?  
• e.g. PCGs with bounded interval.

• Graph-theoretical characterization of 𝑘-leaf powers?
• ad hoc analysis for low degree, higher degree = redundancy





Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then 
𝐺 contains a subset 𝐶 of vertices such that 𝑮 is a 𝒌-leaf power if and only if  
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘 ) if it exists.

This is proved as follows:
1. Show that if a k-leaf root has degree > 𝑑, one can find subsets C1 U Y1, 

…, Cd U Yd, such that Ci cuts Yi from the rest of G.
2. Moreover, C1 U C2 U … U Cd can be partitioned into layers that have the 

same neighborhood in G – (C1 U Y1 U … U Cd U Yd).
3. Moreover again, G[C1 U Y1] admits the same set of encoded k-leaf roots 

as some G[Ci U Yi] (to be defined).
4. Find a k-leaf root T of G – (C1 U Y1).  If none exists, we are done.  

Otherwise, look at how Ci U Yi is organized in T.  By (3), C1 U Y1 allows 
the same k-leaf root organization.  We embed C1 U Y1 into T by 
mimicking C2 U Y2.  By (2), this works.



This is proved as follows:
1. Show that if a k-leaf root has degree > 𝑑, one can find subsets C1 U Y1, 

…, Cd U Yd, such that Ci cuts Yi from the rest of G.
2. Moreover, C1 U C2 U … U Cd can be partitioned into layers that have the 

same neighborhood in G – (C1 U Y1 U … U Cd U Yd).
3. If d is large, some G[Ci U Yi] and G[Cj U Yj] admit the same set of 

encoded k-leaf roots (to be defined).
4. Find a k-leaf root T of G – (Ci U Yi). Look at how Cj U Yj is organized in 

T.  By (3), Ci U Yi allows the same k-leaf root organization.  We embed 
Ci U Yi into T by mimicking Cj U Yj.  By (2), this works.



𝑘-leaf roots with high degree

Theorem
There is 𝑓 such that if 𝐺 admits a 𝑘-leaf root of max degree 𝑑 > 𝑓(𝑘), then 
𝐺 contains a subset 𝐶 of vertices such that G is a 𝒌-leaf power if and only if  
𝑮 – 𝑪 is a 𝒌-leaf power.

Moreover, 𝐶 can be found in time 𝑂(𝑛𝑓 𝑘 ) if it exists.





• T = leaf root of G

• v = lowest max of degree >d

• z = closest leaf to v

• Ci = subtrees at distance <= k from v

• Layer j = leaves at distance j from v



• Of course, we don’t have 𝑇.  Still, by brute-force we can find 
the 𝐶𝑖’s and 𝑌𝑖’s that satisfy the cutset, size and layering 
properties.  This is feasible since the 𝐶𝑖’s have bounded size.
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properties.  This is feasible since the 𝐶𝑖’s have bounded size.



• Of course, we don’t have 𝑇.  Still, by brute-force we can find 
the 𝐶𝑖’s and 𝑌𝑖’s that satisfy the cutset, size and layering 
properties.  This is feasible since the 𝐶𝑖’s have bounded size.

• Look at the k-leaf roots of each G[Ci U Yi].

• WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set 
of layer-encoded k-leaf roots.



• WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set 
of layer-encoded k-leaf roots.


