RECOGNIZING K-LEAF POWERS IN
POLYNOMIAL TIME, FOR CONSTANT K

Manuel Lafond, Université de Sherbrooke, Canada

UNIVERSITE DE
SHERBROOKE

Definition

A graph G is a k-leaf power if there exists a tree T such that:
- L(T) = V(G), where L(T) is the set of leaves of T

- uv € E(G) & distr(u,v) < k

3 — leaf power?

Definition

A graph G is a k-leaf power if there exists a tree T such that:
- L(T) = V(G), where L(T) is the set of leaves of T

- uv € E(G) & distr(u,v) < k

3 — leaf power

G T

Definition
A graph G is a k-leaf power if there exists a tree T such that:

- L(T) = V(G), where L(T) is the set of leaves of T
- uv € E(G) & distr(u,v) < k

Equivalently, G is a k-leaf power if it can be obtained by taking the k-th power
of a tree, and taking the subgraph induced by the leaves of the tree.

3 — leaf power

G T

Definition

A graph G is a k-leaf power if there exists a tree T such that:
- L(T) = V(G), where L(T) is the set of leaves of T

- uv € E(G) & distr(u,v) < k

Open problems [Nishimura, Ragde, Thilikos, 2002]

- Characterize k-leaf powers, for every k.

- Characterize leaf powers, the union of k-leaf powers for all k.
- Isrecognizing leaf powers in P?

- For fixed k, is recognizing k-leaf powers in P?

Definition

A graph G is a k-leaf power if there exists a tree T such that:
- L(T) = V(G), where L(T) is the set of leaves of T

- uv € E(G) & distr(u,v) < k

Open problems [Nishimura, Ragde, Thilikos, 2002]
- Characterize k-leaf powers, for every k. OPEN
- Characterize leaf powers, the union of k-leaf powers for all k. OPEN

- Isrecognizing leaf powers in P? OPEN
- For fixed k, is recognizing k-leaf powers in P? YES, THIS TALK

Theorem

There is an algorithm that, given a graph G, decides whether (¢ is a k-leaf
power in time 0(n/ (), wheren = |V(G)| and f is a function that
depends only on k.

Theorem

There is an algorithm that, given a graph G, decides whether (¢ is a k-leaf
power in time 0(n/ (), wheren = |V(G)| and f is a function that
depends only on k.

3k }
3k~ k times
3k
3k

f(k) =2

Theorem
There is an algorithm that, given a graph G, decides whether (¢ is a k-leaf
power in time 0(n/ (), wheren = |V(G)| and f is a function that

depends only on k.
3k }
3k k times
3k
3k

f(k) =2

Relevance

- Many papers on leaf powers, slow progress. Few results apply to all k.

- Several similar tree-definable graph classes. Techniques developed here
might be applicable to them.

Known results

2-leaf powers = P3-free graphs [folklore/

3-leaf powers = chordal + (bull, gem, dart)-free graphs
[Rautenbach, Disc Maths 2006/

4-leaf powers = chordal + X-free, where X is a finite set of
forbidden subgraphs /Brandstidt et al., TALG 2008/

5-leaf powers recognition in P /Chang & Ko, WG 2007]
6-leaf powers recognition in P /Ducoffe, WG 2019]

Recognizing k-leaf powers is FPT in k + degeneracy(G),
and FPT in k + treewidth(G). /Eppstein & Havvaei, IPEC
2018]

Known results

Leaf power = graphs that are k-leaf powers for some k.
All leaf powers are chordal, and also strongly chordal
Converse not true /L, WG2017; Jaftke & al., TC52019]

Subclasses of strongly chordal (interval, rooted directed,

ptolemaic) graphs are easy to recognize /Brandstadt et al,
LATINZ2008 & DiscMath2010]

Leaf powers have mim-width 1 //affke & al, TCS2019]

Leaf powers with star NeS models in P /Bergougnoux,
2021]

Other tree-definable classes

- Many other tree-to-graph representations, all with similar
open problems
- Pairwise compatiblity graphs (PCG)
- uv edge iff distance in interval [[, h]
- k-interval PCGs, OR-PCGs and AND-PCGs
 Allow k-intervals, union/intersection of PCGs
+ Orthology graphs
- uv edge iff Ica has label 1
- Fitch graphs
« uv edge iff some edge on u — v path has label 1

- Best match graphs

Theorem

There is an algorithm that, given a graph G, decides whether (¢ is a k-leaf
power in time 0(n/ (), wheren = |V(G)| and f is a function that
depends only on k.

High-level overview

- Given a graph G, we must decide whether G is a k-leaf power
(assume that k is fixed).

High-level overview

For G a k-leaf power, a k-leaf root of G is a tree with L(T) = V(G)
satisfyinguv € E(G) & distr(u,v) < k.

G e e 3 — leaf root

High-level overview

For G a k-leaf power, a k-leaf root of G is a tree with L(T) = V(G)
satisfyinguv € E(G) & distr(u,v) < k.

Theorem (from Eppstein & Havvaei, 2019)
There is a function g such that one can decide in time O(g(tw(G), k)n)
whether G is a k-leaf power, where tw(G) is the treewidth of G.

G e e 3 — leaf root e Q
(b) (®
0 ()
(@) ©

High-level overview

For G a k-leaf power, a k-leaf root of G is a tree with L(T) = V(G)
satisfyinguv € E(G) & distr(u,v) < k.

Theorem
Let d, k be integers. Then one can decide in time O(g(d¥, k)n) whether a
graph G admits a k-leaf root of maximum degree d.

G e e 3 — leaf root e G
(b) (®
0 ()
(@) ©

Theorem
Let d, k be integers. Then one can decide in time O(g(d¥, k)n) whether a
graph G admits a k-leaf root of maximum degree d.

- Proofidea.
- If G admits a k-leaf root of max degree d, then G has

maximum degree d*.
G Iz
<

pad
T = (<" fe /
L= S s S

< aT Ag fk u% "'Gj“or(S

u <=

~
<
=
AN

——k —>

Theorem
Let d, k be integers. Then one can decide in time O(g(d¥, k)n) whether a
graph G admits a k-leaf root of maximum degree d.

- Proof idea.

- If G admits a k-leaf root of max degree d, then G has
maximum degree d*.

- In chordal graphs, we have tw(G) = w(G)- 1 < dk.

- tw(G) = treewidth, w(G) = clique number

- Use Eppstein & Havvaei to decide in time
0(g(tw(G), k)n) = 0(g(dk, k)n) whether G is a k-leaf
power.

Theorem
Let d, k be integers. Then one can decide in time O(g(d¥, k)n) whether a
graph G admits a k-leaf root of maximum degree d.

- If d is a function of k, problem solved.

- Bottom-line : the difficulty resides in k-leaf roots of high
maximum degree.

k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then

G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.

s

AN

G G- C
/

k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then

G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.

This says that if ¢ has high-degree k-leaf roots, then ¢ has a redundant
subset of vertices C that can be found and pruned quickly.

s

N

G G- C
/

k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then

G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.

The algorithm:

1) Check if G admits a k-leaf root of degree at most d = f (k). If yes, return “yes”.

2) Otherwise, check if G contains C as described above. If not, return “no”.
3) Otherwise, repeaton G - C.

Finishes in polynomial time, since k is fixed and this is repeated at most n times.

k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then
G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.

This says that if ¢ has high-degree k-leaf roots, then ¢ has a redundant
subset of vertices C that can be found and pruned quickly.

Step 1: find lots of subsets C; U Y, such that the C,’s are cutsets, and all have
the same neighborhood structure.

Step 2 : argue that two of those €, U Y, and C, U Y, admits the “same” k-leaf
roots.

Step 3 : argue that C; U Y, can be removed since it behaveslike C, U Y,

Similar sets of vertices

- Wesay thatC,U Y;and C, U Y, € V(G) are similar if
- C,cuts Y, and C, cuts Y, from the rest of the graph

- €, U C, can be partitioned into layers L, ..., Lk such that
vertices in the same layer have the same neighbors in

Similar sets of vertices

- Wesay thatC,U Y;and C, U Y, € V(G) are similar if
- C,cuts Y, and C, cuts Y, from the rest of the graph

- €, U C, can be partitioned into layers L, ..., Lk such that
vertices in the same layer have the same neighbors in

Similar sets of vertices

- Wesay thatC,U Y;and C, U Y, € V(G) are similar if
- C,cuts Y, and C, cuts Y, from the rest of the graph

- €, U C, can be partitioned into layers L, ..., Lk such that
vertices in the same layer have the same neighbors in

L

l

S

7
y vb /,

Similar sets of vertices

- Wesay thatC,U Y;and C, U Y, € V(G) are similar if
- C,cuts Y, and C, cuts Y, from the rest of the graph

- €, U C, can be partitioned into layers L, ..., Lk such that

vertices in the same layer have the same neighbors in

Lemma
If G has a k-leaf root of maximum degree > d, then there exist

disjoint C; U Y, ...,Cd U Yd pairwise-similar subsets. Also, each
C; has size < dk.

G ,‘ T k-leaf rodt Assume T is rooted. Letv
be a lowest node of degree
> d.
S

vV >d CL\;iclrQV\

| o o

d

G ,‘ T k-leaf rodt Assume T is rooted. Letv
‘. be a lowest node of degree
o > d.

>d C,L\"ic]rQV\

o dat

d

C,L\"ic]rQV\

- Leaves in these depth k
subtrees form cutsets in G.

- Each cutset has size at most
dk.

- These cutsets are organized
into layers determined by
their distance to v.

- Same distance = same
neighbors “above” v.

Leaves in these depth k
subtrees form cutsets in G.
Each cutset has size at most
dk.

These cutsets are organized
into layers determined by
their distance to v.

Same distance = same
neighbors “above” v.

— !
veL

Depth k leaves from v form
cutsets in G.

N

— !
veL

Each cutset has size at most d*
because they are in a subtree of
degree at most d.

Y

Layers = distance from v inT.
Two vertices in the same layer
have the same neighbors outside
of the red and blue subtrees.

Lemma
If G has a k-leaf root of maximum degree > d, then there exist

disjoint C; U Y, ...,Cd U Yd pairwise-similar subsets. Also, each
C, has size < dk.

Lemma
If G has a k-leaf root of maximum degree > d, then there exist

disjoint C; U Y, ...,Cd U Yd pairwise-similar subsets. Also, each
C, has size < dk.

- So we can find many subsets with the same neighborhood
structure.

- Next : find two among those that have the “same” k-leaf roots.

Similar sets with the same leaf roots

- Let C; U Y, be a set of vertices organized into layers L, ..., Lk.
- Let T, be a k-leafroot of G[C, U Y,]. The layer-encoding of T, is obtained by
- restricting T, to C; and their ancestors
- replacing each leaf of C, by its layer number.
- labeling internal nodes by the distance to its closest Y, leaf
- keeping at most 2 copies of each identical child subtree (see paper)

L (Mg

L. @ (2)

y o
3 ?/Qzaqf rodl

Similar sets with the same leaf roots

- Let C; U Y, be a set of vertices organized into layers L, ..., Lk.
- Let T, be a k-leafroot of G[C, U Y,]. The layer-encoding of T, is obtained by
- restricting T, to C; and their ancestors
- replacing each leaf of C, by its layer number.
- labeling internal nodes by the distance to its closest Y, leaf
- keeping at most 2 copies of each identical child subtree (see paper)

L, ®
OX (1) Tady
(2) (2)

L
Similar sets with the same leaf roots

- Let C; U Y, be a set of vertices organized into layers L, ..., Lk.
- Let T, be a k-leafroot of G[C, U Y,]. The layer-encoding of T, is obtained by
- restricting T, to C; and their ancestors
- replacing each leaf of C, by its layer number.
- labeling internal nodes by the distance to its closest Y, leaf
- keeping at most 2 copies of each identical child subtree (see paper)

Lemma
The number of possible layer-encoded k-leaf roots is at most s(k), a
function that depends only on k.

---3k |

3 k3k _ k times

s(k) = 315°)

L
Similar sets with the same leaf roots

Lemma
The number of possible layer-encoded k-leaf roots is at most s(k), a
function that depends only on k.

L
Similar sets with the same leaf roots

Lemma

The number of possible layer-encoded k-leaf roots is at most s(k), a
function that depends only on k.

- So what?

- Let C, U Y, be a set of vertices organized into layers L, ..., Lk.

- Let S(C, U Y,) be the set of layer-encoded k-leaf roots that encode some
k-leaf root of G[C,; U Y,].

Lemma

If G admits a k-leaf root of maximum degree d > 25() then G contains
two similar subsets C,UY,,C,UY,suchthatS(C,uY,) = S(C,UY,).

L
Similar sets with the same leaf roots

Lemma
If G admits a k-leaf root of maximum degree d > 2° (%) then G contains
two similar subsets C,UY,,C,UY,suchthatS(C;,uY, = S(C,UY,).

Similar sets with the same leaf roots

Lemma
If G admits a k-leaf root of maximum degree d > 2° (%) then G contains
two similar subsets C,UY,,C,UY,suchthatS(C;,uY, = S(C,UY,).

- Proof idea.

- There are s(k) layer-encoded k-leaf roots, and so 25()
possible values for S(Ci U Yi).

- If G has a k-leaf root with d > 25() we know that we can
find > 25(®) pairwise similar subsets.
- By the pigeonhle principle, S(Ci U Y,) = S(Cj U Yj) holds
for two of them.
* (Justreindex them so thati =1, = 2)

L
Similar sets with the same leaf roots

So far, we know that:

Lemma
If G admits a k-leaf root of maximum degree d > 2° (%) then G contains
two similar subsets C;UY,,C,UY,suchthatS(C;,uvY, = S(C,UY,).

This is useful because:

Lemma

LetC,UY,C,UY,besimilar subsets and assume thatS(C, U Y,) =
S(C,UY,).

Then G is a k-leaf power ifand only if G - (C, U Y,) is a k-leaf power.

L
Similar sets with the same leaf roots

Lemma

LetC,UY,C,UY,besimilar subsets and assume thatS(C, U Y,) =
S(C,UY,).

Then G is a k-leaf power ifand only if G - (C,UY,) is a k-leaf power.

Similar sets with the same leaf roots

Lemma

LetC,UY,C,UY,besimilar subsets and assume thatS(C, U Y,) =
S(C,UY,).

Then G is a k-leaf power ifand only if G - (C,UY,) is a k-leaf power.

- Proof idea.

- If G - (C,UY,)isnotak-leaf power, then neitheris G. So
assume that G - (C, UY,) has a k-leaf root T.

- Look atT, = (T restricted to C, UY,). Now, C,; UY, admits a
k-leaf root T with the same layer-encoding as T,.

- Embed T, into T by mimicking T,. The result is a k-leaf
power of G.

» This works because C, UY,; and C, U Y, are layered
similarly, and because layer-encoding capture all relevant
neighborhood and distance information.

L
Similar sets with the same leaf roots

Lemma
If G admits a k-leaf root of maximum degree d > 2° (%) then G contains
two similar subsets C,UY,,C,UY,suchthatS(C;,uY, = S(C,UY,).

Lemma

LetC,UY,,C,UY,Dbesimilar subsets and assume that S(C, UY,) =
S(C,UY,).

Then G is a k-leaf power ifand only if G - (C, U Y,) is a k-leaf power.

L
Similar sets with the same leaf roots

Lemma

If G admits a k-leaf root of maximum degree d > 2° (%) then G contains
two similar subsets C,UY,,C,UY,suchthatS(C;,uY, = S(C,UY,).

Lemma

LetC,UY,,C,UY,Dbesimilar subsets and assume that S(C, UY,) =
S(C,UY,).

Then G is a k-leaf power ifand only if G - (C, U Y,) is a k-leaf power.

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then
G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.

e E
Finding the redundant C

- To find the redundant C = C,UY;:

- Enumerate every subset C,, ..., C, of size at most at most d* each,
zs(k))

where d = 25(), This most time-consuming part takes O(n

- Find the Y,’s by looking at G - Ci.

- Check if the C; U Y, form pairwise-similar sets (brute force every
layering).

- For each C; U Y;, compute the set of layer-encoded k-leaf roots to
obtain S(Ci U Y,). This can be done by DP on the tree decomposition.

- Find two equal S(Ci U Y)) sets.

L
Wrapping it up

- If G admits a k-leaf root of low degree, “easy”.

- If G has a k-leaf root T of high degree d:

- High degree node of T implies many similarly layered C, U Y,’s
- We can layer-encode the k-leaf roots of each C; U Y,
- There are s(k) possible layer-encoded k-leaf roots.

- It d is large enough, two C; U'Y; and C; U Y, admit the same layer-
encoded k-leaf roots.

- If this is the case, C; U Y, is redundant because it can mimick C; U'Y.
We can remove it without losing information.

L
What's next?

- Can the ridiculous n/) complexity be improved? Or is the
power tower behavior necessary?

- Is k-leaf power recognition FPT in k? i.e. f(k) * poly(n)
algorithm?

- Techniques applicable to leaf powers? (not sure)

- Techniques applicable to other tree-definable graph classes?
- e.g. PCGs with bounded interval.

- Graph-theoretical characterization of k-leaf powers?

- ad hoc analysis for low degree, higher degree = redundancy

Theorem

There is f such that if G admits a k-leaf root of max degree d > f(k), then
G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (n/*)) if it exists.

This is proved as follows:

1. Show thatif a k-leaf root has degree > d, one can find subsets C1 U Y1,
..., Cd U Yd, such that Ci cuts Yi from the rest of G.

2. Moreover,C1 U C2 U ... U Cd can be partitioned into layers that have the
same neighborhoodin G- (C1UY1 U ..UCdU Yd).

3. Moreover again, G[C1 U Y1] admits the same set of encoded k-leaf roots
as some G[Ci U Yi] (to be defined).

4. Find a k-leafroot T of G- (C1 U Y1). If none exists, we are done.
Otherwise, look at how Ci U Yi is organized in T. By (3), C1 U Y1 allows
the same k-leaf root organization. We embed C1 U Y1 into T by
mimicking C2 U Y2. By (2), this works.

This is proved as follows:

1. Show thatif a k-leaf root has degree > d, one can find subsets C1 U Y1,
..., Cd U Yd, such that Ci cuts Yi from the rest of G.

2. Moreover,C1 U C2 U ... U Cd can be partitioned into layers that have the
same neighborhoodin G- (C1UY1 U ..UCd U Yd).

3. Ifdislarge, some G[Ci U Yi] and G[Cj U Yj] admit the same set of
encoded k-leaf roots (to be defined).

4. Find a k-leaf root T of G - (Ci U Yi). Look at how Cj U Yj is organized in
T. By (3), Ci U Yi allows the same k-leaf root organization. We embed
CiUYiinto T by mimicking Cj U Yj. By (2), this works.

k-leaf roots with high degree

Theorem

There is f such that if ¢ admits a k-leaf root of max degree d > f(k), then

G contains a subset C of vertices such that G is a k-leaf power if and only if
G - Cis a k-leaf power.

Moreover, C can be found in time 0 (nf®)) if it exists.

- T =leaf root of G

- v = lowest max of degree >d

- 7z = closest leafto v

» Ci = subtrees at distance <=k from v
- Layer j = leaves at distance j from v

» Of course, we don’t have T'. Still, by brute-force we can find
the C;'s and Y,’s that satisfy the cutset, size and layering
properties. This is feasible since the C;’s have bounded size.

. 3.1 Similar structures A similar structure of a graph G is a tuple S = (C,), z, L) where: .

o C={C),...,C4} is a collection of d > 2 pairwise disjoint, non-empty subsets of vertices of G:

o V = {Y},....Y,} is a collection of pairwise disjoint subsets of vertices of GG, some of which are possibly
empty. Also, C;NY; =0 for any i, j € [d];

e z € V(G) and does not belong to any subset of C or V:

o L = {#,...,Lq4} is a set of functions where, for each i € [d], we have ¢; : C; U {z} — {0,1,....k}. The
functions in £ are called layering functions.

Additionally, § must satisfy several conditions. Let us denote C* = Uc‘e[d] Ci. Let X = {Xy,..., X} be the

connected components of G — C*. For each i € [d], denote XM = {X; € X : N¢(X;) € Ci}, i.e. the components

that have neighbors only in C;.
Then all the following conditions must hold:

1. for each i € [d], Yi = Uy, . x» X; (Yi = 0 is possible);

2. there is exactly one connected component X. € X such that for all i € [d], Ng(X.) N C; # 0. Moreover,
z € X, and C* C Ng(z);

3. for all X; € X\ {X.}, X; CY, for some i € [d]. In particular, X, is the only connected component of
G — C* with neighbors in two or more C,'s;

4. the layering functions £ satisfy the following:

(a) for each i € [d], £;(z) = 0. Moreover, £;(x) > 0 for any z € Cj;

(b) for any #,j € [d] and any z € Cj,y € Cj, li(z) = £;(y) implies Ng(z) \ (CiUY,UC;LY;) =
Na(y) \ (C;UY; UC; UY;). Note that this includes the case i = j;

(c) for any i,j € [d] and any z € Ci,y € C;, £;(x) + £;(y) < k implies zy € E(G). Note that this includes
the case i = j.

(d) for any two distinct i,j € [d] and any x € Cy,y € Cy, €i(x) + £;(y) > k implies zy ¢ E(G). Note that
this does not include the case i = j

» Of course, we don’t have T'. Still, by brute-force we can find
the C;'s and Y,’s that satisfy the cutset, size and layering
properties. This is feasible since the C;’s have bounded size.

» Of course, we don’t have T'. Still, by brute-force we can find
the C,'s and Y,’s that satisfy the cutset, size and layering
properties. This is feasible since the C;’s have bounded size.

- Look at the k-leaf roots of each G[Ci U Yi].

- WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set
of layer-encoded k-leaf roots.

- WANT : two G[Ci U Yi] and G[Cj U Yj] that admit the same set
of layer-encoded k-leaf roots.

