THE COMPLEXITY OF FINDING COMMON PARTITIONS OF GENOMES WITH PREDEFINED BLOCK SIZES

Manuel Lafond ${ }^{1}$, Adiesha Liyanage ${ }^{2}$, Binhai Zhu ${ }^{2}$, Peng Zou ${ }^{2}$
${ }^{1}$ Université de Sherbrooke, Canada
${ }^{2}$ Montana State University, USA

Synteny : block of at least two genes that was conserved across multiple species.

Chr. 1
Chr. 2 Plasmids

Leptospira strains syntenies
Image taken from Ramli et al.: https://doi.org/10.3390/pathogens10091198

Synteny : block of at least two genes that was conserved across multiple species.

Human vs pig synteny map Image taken from Kim et al.: https://doi.org/10.1186/1471-2164-13-711

Synteny : block of at least two genes that was conserved across multiple species.
To find syntenic blocks between two genomes S and T :

- Partition genes into homologous families
- Represent S and T as strings (each symbol $=1$ gene family)
- Partition S and T into identical substrings (blocks)

a a baaba a abab

ababaabbaba

a a ba abadabab

ababaambaaba

a aboabadabab
 ababaa aba aba

Usual formulation: Minimum Common String Partition (MCSP)

Given strings S, T, split them into two identical (multi)sets of blocks, while minimizing the number of blocks.

a abaabadabab
 ababababaaba

Usual formulation: Minimum Common String Partition (MCSP)

Given strings S, T, split them into two identical (multi)sets of blocks, while minimizing the number of blocks.

a a baaba a bab

ababaabaaba

Usual formulation: Minimum Common String Partition (MCSP)

Given strings S, T, split them into two identical (multi)sets of blocks, while minimizing the number of blocks.

$$
\begin{aligned}
& \text { a ababa a abab } \\
& \text { ababa a aba aba }
\end{aligned}
$$

a a b a a baaba ab a b abababa a ba

a abaabaa abab
 $a b a b a a \operatorname{baba}$

a a b a a badabab
 ababababa aba

The Exact Strip Recovery problem

Given two strings S, T and min block size b, does there exist a common partition of S and T in which the size of each block is at least b ?

The Exact Strip Recovery problem

Given two strings S, T and min block size b, does there exist a common partition of S and T in which the size of each block is at least b ?

The Min-Strip Recovery Problem
Given two strings S, T and min block size b, delete a minimum number of characters from the strings, so that they admit a common partition with blocks of size at least b.

The Min-Strip Recovery Problem

Given two strings S, T and min block size b, delete a minimum number of characters from the strings, so that they admit a common partition with blocks of size at least b.
$b=4$

a abaabaabab

ababbaabaaba

The Min-Strip Recovery Problem

Given two strings S, T and min block size b, delete a minimum number of characters from the strings, so that they admit a common partition with blocks of size at least b.
$b=4$

$$
\text { a abaaba } \not \subset \mathrm{abab}
$$

ababbaabaaba

Past results

- Min Strip Recovery

- Formulation in [Zheng, Zhu \& Sankoff 2007]

- Heuristics based on Maximum Clique [Choi et al 2007]

RICE

$1+001+003+004+006+007+008+010+013+014+016+017+019+020+021+022+023+024+028+029+032+035$ $+037+038+039+040+041+042+043+044+049+051+052+053+054+055+056+057+058+059+060+061+062+063$ $+064+065+067+069+070+071+072+073+076$
$2+080+081+083+084+085+086+087+088+089+090+092+093+094+095+096+100+102+104+105+106+109$ $+110+111+112+114+115+117+118+119+120+121+122+123+124+125+126+127+128+129$
$3+131+132+133+135+136+137+138+139+140+144+145+147+148+149+150+151+152+153+154+155+156$ $+157+158+159+160+161+162+163+164+165+169+170+172+175+177+179+181+182+183+184+185+187+188$ $+191+192+193+194+195+198+200+201+202+203$
$4+206+207+210+211+212+214+217+218+220+222+223+224+226+229+230+234+235+237+238$
$5+239+242+243+244+245+246+249+250+251+252+260+261+262+263+265+268+269+272+273+274+276$ $+277+279$
$6+280+281+283+284+285+286+288+289+290+291+292+293+295+299+304+305+307+308+310+311+313$ $+314+315+317+318+320+321+322+323+324+325+326$
$7+327+328+329+330+332+334+336+337+338+340+342+343+344+347+350+351+352+355+356+357$
$8+358+362+363+365+367+371+372+373+374+377+378+379+380+381+382+383+386+387$
$9+388+392+393+394+395+396+397+398+399+402+403+405+409+410+413$
$10+416+418+420+423+425+426+427+429$
$11+431+432+434+435+436+438+439+440+442+443+447+448+449+450+452+454+455+456$
$12+460+464+466+470+474+477$
SORGHUM
A $-013-010-008-007-006-004-003-001+014+016+017+019+020+021+022+023+024+028+029+032+035$ $+037+038+039+040+041+042+043+044+049+051+054+055+056+057+058+059+060+061+062+063+064+065$ $+067+069+070+071+072+073+076$
 $\begin{array}{llllllllllllll}-402 & -399 & -398 & -397 b+395 & +396 & +392 & +393 & +394 & -388 & -336 & -334 & -332 & -330 & -329\end{array}-328-327$
C $+202+203+200+201-198-195-194-193+191+192+184+185+187+188-183-182-181-179-177-175-426$ $-425-423+052 b+053+109+110+386+387+420-418-416\left[\begin{array}{lllllllllll} & -429 & -427 & -172 & -170 & -169 b & -165 & -164 & +156+157 & +158 & +159\end{array}\right.$ $+160+154+155[-153+150+151+152+148+149-147-145-144[-137 \mid+135+136-133-132-131$

D
E
-238
$-477 b$

$\mathbf{E} \frac{-477 b-474}{\mathbf{F}}+\mathbf{+ 1 2 8}+129+126+127+124+125-123-122-121+111+112+114+115+117+118+119+120+102+104+105+106$ $-096+094+095 b-093-092-090+088+089+086+087+084+085-083-081-080$
 -242-239
H $+431+432+434+435 c+436 c+438+439 b+440+442+443+447+448-450-449+452+454+455+456$
I $+325+326+323+324 b-322-321-320-318-317 b-315+313+314-311+138+139 b+140+305+307+308+310-304$ $+293+295+299+291+292-290-289-288-286-285-284-283-281-280$
J $+377+378+379+380+381 b+382+383-100+367 b+371+372+373+374-365-363 b-362-358$

Past results

- Min Strip Recovery
- Formulation in [Zheng, Zhu \& Sankoff 2007]
- Heuristics based on Maximum Clique [Choi et al 2007]
- NP-hard even on permutations [Wang \& Zhu 2010]
- Some approximation results
- No arbitrarily good approx. [Jiang 2011]
- Some constant factor approx. [Chen et al. 2009]
- $O\left(3^{k} * n\right)$ time algorithm, $k=\#$ of genes to delete [Jiang et al. 2012]

Past results

- Min Strip Recovery
- Formulation in [Zheng, Zhu \& Sankoff 2007]
- Heuristics based on Maximum Clique [Choi et al 2007]
- NP-hard even on permutations [Wang \& Zhu 2010]
- Some approximation results
- No arbitrarily good approx. [Jiang 2011]
- Some constant factor approx. [Chen et al. 2009]
- $O\left(3^{k} * n\right)$ time algorithm, $k=\#$ of genes to delete [Jiang et al. 2012]
- This paper: polynomial time on fixed alphabets

Past results

- Exact Strip Recovery
- Exact Recovery = special case with 0 deletions allowed
- Easy if input strings are permutation (no duplicates)
- Otherwise, complexity = open problem [Bulteau \& Weller 2019]

Past results

- Exact Strip Recovery
- Exact Recovery = special case with 0 deletions allowed
- Easy if input strings are permutation (no duplicates)
- Otherwise, complexity = open problem [Bulteau \& Weller 2019]
- This paper: NP-hard if genes have duplicates

NP-hardness of

a generalized Exact-Strip Recovery problem

The Exact Strip Recovery problem

Given two strings S, T and min block size b, does there exist a common partition of S and T in which the size of each block is at least b ?

The Exact Strip Recovery problem

Given two strings S, T and min block size b, does there exist a common partition of S and T in which the size of each block is at least b ?
$\boldsymbol{b}=\mathbf{2}$: the answer is yes if and only if there is a common partition with block sizes in $\{2,3\}$
Intuition: size 4 block $=2+2$, size 5 block $=2+3$, \ldots

The Exact Strip Recovery problem

Given two strings S, T and min block size b, does there exist a common partition of S and T in which the size of each block is at least b ?
$\boldsymbol{b}=\mathbf{2}$: the answer is yes if and only if there is a common partition with block sizes in $\{2,3\}$
$\boldsymbol{b}=\mathbf{3}$: the answer is yes if and only if there is a common partition with block sizes in $\{3,4,5\}$

The Exact Strip Recovery problem

Given two strings S, T and min block size b, does there exist a common partition of S and T in which the size of each block is at least b ?
$\boldsymbol{b}=\mathbf{2}$: the answer is yes if and only if there is a common partition with block sizes in $\{2,3\}$
$\boldsymbol{b}=\mathbf{3}$: the answer is yes if and only if there is a common partition with block sizes in $\{3,4,5\}$
$\boldsymbol{b}=4$: the answer is yes if and only if there is a common partition with block sizes in $\{4,5,6,7\}$

The Exact Strip Recovery problem

Given two strings S, T and min block size b, does there exist a common partition of S and T in which the size of each block is at least b ?

Lemma

For any infinite set F of allowed block sizes, there exists a finite set F^{\prime} such that the strip recovery problem with allowed block sizes F or F^{\prime} are equivalent (i.e. admit same set of solutions).

The Exact Strip Recovery problem

Given two strings S, T and min block size b, does there exist a common partition of S and T in which the size of each block is at least b ?

Lemma

For any infinite set F of allowed block sizes, there exists a finite set F^{\prime} such that the strip recovery problem with allowed block sizes F or F^{\prime} are equivalent (i.e. admit same set of solutions).

- We might as well generalize to arbitrary allowed block sizes F.

The Exact F-Strip Recovery problem (XSR-F)

Input: two strings S, T
Question: does there exist a common partition of S and T in which the size of each block is in F ?

Here, F is a fixed set of integers.

The Exact F-Strip Recovery problem (XSR-F)

Input: two strings S, T
Question: does there exist a common partition of S and T in which the size of each block is in F ?

Here, F is a fixed set of integers.

Theorem

If all sizes in F are a multiple of $\min (F)$, then the problem can be solved in polynomial time.
For any other \boldsymbol{F}, the problem is NP-hard, even if each symbol occurs at most 6 times in the input strings.

Theorem

If all sizes in F are a multiple of $\min (F)$, then the problem can be solved in polynomial time.

$$
F=\{2,4,6\}
$$

acabaacbac

cbaaacacab

Theorem

If all sizes in F are a multiple of $\min (F)$, then the problem can be solved in polynomial time.

$$
\begin{aligned}
F= & \{2,4,6\} \text { equivalent to } \mathrm{F}=\{2\} \\
& \text { a c a b a a c b a c }
\end{aligned}
$$

c baacacab

Theorem

If all sizes in F are a multiple of $\min (F)$, then the problem can be solved in polynomial time.

$$
F=\{2,4,6\} \text { equivalent to } F=\{2\}
$$

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{a} \text { c } & \mathrm{a} & \mathrm{a} & \mathrm{c} \\
\hline
\end{array}
$$

$$
\begin{array}{|c|l|l|l|}
\hline \mathrm{c} \text { a } \\
\hline
\end{array}
$$

Theorem

If all sizes in F are a multiple of $\min (F)$, then the problem can be solved in polynomial time.

$$
F=\{2,4,6\} \text { equivalent to } F=\{2\}
$$

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{a} \text { c } & \mathrm{a} & \mathrm{a} & \mathrm{c} \\
\hline
\end{array}
$$

$$
\begin{array}{|c|l|l|l|}
\hline \mathrm{c} \text { a } \\
\hline
\end{array}
$$

Theorem

If all sizes in F are a multiple of $\min (F)$, then the problem can be solved in polynomial time.

Theorem (continued)

For any other F, the problem is NP-hard, even if each symbol occurs at most 6 times in the input strings.
(in particular, hard for $F=\{2,3\}$ representing blocks sizes of size at least 2)

Theorem (continued)

For any other \boldsymbol{F}, the problem is NP-hard, even if each symbol occurs at most 6 times in the input strings.

Reduction from Positive Cubic 1-in-3 SAT to XSR-F with string sets.

- Given a boolean formula in which each clause has 3 positive variables and each variable x_{i} occurs exactly three times.
- Goal: assign x_{i} 's to true or false so that for each clause, exactly one of its variables is true.
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{5}\right) \wedge \ldots=>S, T$
Satisfiable iff Exact partition exists
for each variable x_{i}
Define X_{i} and X_{i}^{\prime} as

$$
\begin{aligned}
X_{i} & =P_{i}^{1} P_{i}^{2} \ldots P_{i}^{r} P_{i}^{*} \mathbb{L}_{a} \mathbb{M}_{a} \mathbb{R}_{a} Q_{i} \mathbb{L}_{b} \mathbb{M}_{b} \mathbb{R}_{b} S_{i} \mathbb{L}_{c} \mathbb{M}_{c} \mathbb{R}_{c} T_{i}^{*} T_{i}^{1} T_{i}^{2} \ldots T_{i}^{r} \\
X_{i}^{\prime} & =P_{i}^{1} P_{i}^{2} \ldots P_{i}^{r} P_{i}^{*} \mathbb{L}_{a} \mathbb{M}_{a}^{\prime} \mathbb{R}_{a} Q_{i} \mathbb{L}_{b} \mathbb{M}_{b}^{\prime} \mathbb{R}_{b} S_{i} \mathbb{L}_{c} \mathbb{M}_{c}^{\prime} \mathbb{R}_{c} T_{i}^{*} T_{i}^{1} T_{i}^{2} \ldots T_{i}^{r}
\end{aligned}
$$

We put $\mathcal{W}_{1}=\left\{X_{1}, X_{1}^{\prime}, X_{2}, X_{2}^{\prime}, \ldots, X_{n}, X_{n}^{\prime}\right\}$.

$$
\begin{aligned}
& X_{i}=\underline{\underline{P_{i}^{1} P_{i}^{2} \ldots P_{i}^{r} P_{i}^{*}}} \underline{\underline{\mathbb{L}_{a}} \mathbb{M}_{a}} \underline{\mathbb{R}_{a} Q_{i}} \underline{\underline{\mathbb{L}_{b}} \mathbb{M}_{b}} \underline{\mathbb{R}_{b} S_{i}} \underline{\underline{\mathbb{L}_{c}} \mathbb{M}_{c}} \underline{\mathbb{R}_{c} T_{i}^{*}} \underline{T_{i}^{1}} \underline{T_{i}^{2}} \cdots \underline{T_{i}^{r}} \\
& X_{i}^{\prime}=\underline{P_{i}^{1}} \underline{P_{i}^{2}} \cdots \underline{P_{i}^{r}} \underline{P_{i}^{*} \mathbb{L}_{a}} \xlongequal{\mathbb{M}_{a}^{\prime} \mathbb{R}_{a}} \underline{Q_{i}} \mathbb{L}_{b} \underline{\underline{\mathbb{M}_{b}^{\prime}} \mathbb{R}_{b}} \underline{S_{i} \mathbb{L}_{c}} \underline{\underline{\mathbb{M}_{c}^{\prime}} \mathbb{R}_{c}} \underline{\underline{T_{i}^{*} T_{i}^{1} T_{i}^{2} \ldots T_{i}^{r}}}
\end{aligned}
$$

Fig. 2. Partition of X_{i} and X_{i}^{\prime} corresponding to $x_{i}=$ true.

$$
\begin{aligned}
& X_{i}=\underline{P_{i}^{1}} \underline{P_{i}^{2}} \cdots \underline{P_{i}^{r}} \underline{P_{i}^{*} \mathbb{L}_{a}} \underline{\underline{\mathbb{M}_{a}} \mathbb{R}_{a}} \underline{Q_{i}} \mathbb{L}_{b} \underline{\underline{\mathbb{M}_{b} \mathbb{R}_{b}}} \underline{S_{i} \mathbb{L}_{c}} \underline{\underline{\mathbb{M}_{c}} \mathbb{R}_{c}} \underline{\underline{T_{i}^{*} T_{i}^{1} T_{i}^{2} \ldots T_{i}^{r}}} \\
& X_{i}^{\prime}=\underline{\underline{P_{i}^{1} P_{i}^{2}} \ldots P_{i}^{r} P_{i}^{*}} \underline{\underline{\mathbb{L}_{a} \mathbb{M}_{a}^{\prime}} \underline{\mathbb{R}_{a} Q_{i}} \xlongequal{\mathbb{L}_{b} \mathbb{M}_{b}^{\prime}} \underline{\mathbb{R}_{b}} \underline{S_{i}} \xlongequal{\mathbb{L}_{c}} \mathbb{M}_{c}^{\prime}} \underline{\mathbb{R}_{c} T_{i}^{*}} \underline{T_{i}^{1}} \underline{T_{i}^{2}} \cdots \underline{T_{i}^{r}}
\end{aligned}
$$

Fig. 3. Partition of X_{i} and X_{i}^{\prime} corresponding to $x_{i}=$ false.
for each variable x_{i}
Define X_{i} and X_{i}^{\prime} as

$$
\begin{aligned}
X_{i} & =P_{i}^{1} P_{i}^{2} \ldots P_{i}^{r} P_{i}^{*} \mathbb{L}_{a} \mathbb{M}_{a} \mathbb{R}_{a} Q_{i} \mathbb{L}_{b} \mathbb{M}_{b} \mathbb{R}_{b} S_{i} \mathbb{L}_{c} \mathbb{M}_{c} \mathbb{R}_{c} T_{i}^{*} T_{i}^{1} T_{i}^{2} \ldots T_{i}^{r} \\
X_{i}^{\prime} & =P_{i}^{1} P_{i}^{2} \ldots P_{i}^{r} P_{i}^{*} \mathbb{L}_{a} \mathbb{M}_{a}^{\prime} \mathbb{R}_{a} Q_{i} \mathbb{L}_{b} \mathbb{M}_{b}^{\prime} \mathbb{R}_{b} S_{i} \mathbb{L}_{c} \mathbb{M}_{c}^{\prime} \mathbb{R}_{c} T_{i}^{*} T_{i}^{1} T_{i}^{2} \ldots T_{i}^{r}
\end{aligned}
$$

We put $\mathcal{W}_{1}=\left\{X_{1}, X_{1}^{\prime}, X_{2}, X_{2}^{\prime}, \ldots, X_{n}, X_{n}^{\prime}\right\}$.
As for \mathcal{W}_{2}, each of its strings has length ℓ or h. First, for each variable x_{i}, with C_{a}, C_{b}, C_{c} the clauses containing x_{i}, add the following strings to \mathcal{W}_{2} :

$$
\begin{aligned}
& -P_{i}^{1}, P_{i}^{2}, \ldots, P_{i}^{r} \\
& -P_{i}^{1} P_{i}^{2} \ldots P_{i}^{r} P_{i}^{*} \\
& -P_{i}^{*} \mathbb{L}_{a} \\
& -\mathbb{R}_{a} Q_{i}, Q_{i} \mathbb{L}_{b}, \mathbb{R}_{b} S_{i}, S_{i} \mathbb{L}_{c} \\
& -\mathbb{R}_{c} T_{i}^{*} \\
& -T_{i}^{*} T_{i}^{1} T_{i}^{2} \ldots T_{i}^{r} \\
& -T_{i}^{1}, T_{i}^{2}, \ldots, T_{i}^{r}
\end{aligned}
$$

(r strings of length ℓ) (one string of length $r \ell+\ell-s=h\}$ (one string of length $\ell-s+s=\ell$)
(four strings of length $s+\ell-s=\ell$) (one string of length $s+\ell-s=\ell$) (one string of length $r \ell+\ell-s=h\}$
(r strings of length ℓ)
Then, for each clause C_{a}, add the following strings to \mathcal{W}_{2} :

$$
-\mathbb{L}_{a} \mathbb{M}_{a}, \mathbb{M}_{a}^{\prime} \mathbb{R}_{a} \quad \quad \text { (two strings of length } h \text {) }
$$

Second step:
 Reduction from XSR-F with string sets to XSR-F with single sequences.

Denote $\mathcal{W}_{1}=\left\{A_{1}, \ldots, A_{n}\right\}$ and $\mathcal{W}_{2}=\left\{B_{1}, \ldots, B_{m}\right\}$
Now build single strings S and T as follows:

$$
\begin{aligned}
& S=A_{1} X_{1} Y_{1} Z_{1} A_{2} X_{2} Y_{2} Z_{2} \ldots A_{n} X_{n} Y_{n} Z_{n} \\
& T=B_{1} Z_{1} Y_{1} X_{1} B_{2} Z_{2} Y_{2} X_{2} \ldots B_{m} Z_{m} Y_{m} X_{m} Z_{m+1} Y_{m+1} X_{m+1} \ldots Z_{n} Y_{n} X_{n}
\end{aligned}
$$

We now show that $\mathcal{W}_{1}, \mathcal{W}_{2}$ admit a common F-partition if and only if S, T admit a common F-partition.

A polynomial time algorithm for fixed alphabet and fixed F

The General F-Strip Recovery problem (GSR-F)

Input: two strings S, T
Goal: delete a minimum number of characters from S and T so that the resulting strings admit a common partition into blocks of sizes in F.

The General F-Strip Recovery problem (GSR-F)

Input: two strings S, T
Goal: delete a minimum number of characters from S and T so that the resulting strings admit a common partition into blocks of sizes in F.

Theorem

If the alphabet Σ is fixed and F is also fixed, then GSR-F can be solved in polynomial time.

The General F-Strip Recovery problem (GSR-F)

Input: two strings S, T
Goal: delete a minimum number of characters from S and T so that the resulting strings admit a common partition into blocks of sizes in F.

Theorem

If the alphabet Σ is fixed and F is also fixed, then GSR-F can be solved in polynomial time.
Time: $O\left(n^{|F||\Sigma|^{\max (F)}+3}\right)$

The General F-Strip Recovery problem (GSR-F)

Input: two strings S, T
Goal: delete a minimum number of characters from S and T so that the resulting strings admit a common partition into blocks of sizes in F.

Theorem

If the alphabet Σ is fixed and F is also fixed, then GSR-F can be solved in polynomial time.
Time: $O\left(n^{|F| \Sigma| |^{\max (F)}+3}\right)$
For the standard $\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ and $\mathrm{F}=\{2,3\}$, this is $O\left(n^{131}\right)$

Theorem

If the alphabet \sum is fixed and F is also fixed, then GSR-F can be solved in polynomial time.
Time: $O\left(n^{|F||\Sigma|^{\max (F)}+3}\right)$

Dynamic programming algorithm
Block $=$ any string over \sum whose length is in F.
Block count table $=$ table C that assigns a number to each possible block.

aaa	aab	aba	abb	baa	bab	bba	bbb
0	0	1	0	1	0	2	0

Theorem

If the alphabet Σ is fixed and F is also fixed, then GSR-F can be solved in polynomial time.
Time: $O\left(n^{|F||\Sigma|^{\max (F)}+3}\right)$

Dynamic programming algorithm

Block $=$ any string over Σ whose length is in F.
Block count table $=$ table C that assigns a number to each possible block.

For a string S and block count table C, $D(S, C)=$ min number of deletions to make in S so that the resulting string can be split into blocks, such that the number of each block is the same as in C (or infinity if not possible).

For a string S and block count table C,
$D(S, C)=$ min number of deletions to make in S so that the resulting string can be split into blocks, such that the number of each block is the same as in C (or infinity if not possible).

aaa	aab	aba	abb	baa	bab	bba	bbb
0	0	1	0	1	0	2	0

abbabaa a babba

For a string S and block count table C,
$D(S, C)=$ min number of deletions to make in S so that the resulting string can be split into blocks, such that the number of each block is the same as in C (or infinity if not possible).

C: \quad aaa	aab	aba	abb	baa	bab	bba	bbb	
	0	0	1	0	1	0	2	0

ф bbabaadababa
$\mathrm{D}(\mathrm{S}, \mathrm{C})=2$

The algorithm

- On input strings S, T
bestSolution $=\infty$
For each possible block count table C
Compute $D(S, C)$ using DP
Compute $D(T, C)$ using DP
If $D(S, C)+D(T, C)<$ bestSolution then bestSolution $=D(S, C)+D(T, C)$

For a string S and block count table C, $D(S, C)=$ min number of deletions to make in S so that the resulting string can be split into blocks, such that the number of each block is the same as in C (or infinity if not possible).

Idea: for any i, let $S[1 . . i]$ be the prefix of S of length i. $D(S[1 . . i], C)$ can be computed from all the $D\left(S[1 . . j], C^{\prime}\right)$ values, where $j<i$.

For a string S and block count table C,
$D(S, C)=$ min number of deletions to make in S so that the resulting string can be split into blocks, such that the number of each block is the same as in C (or infinity if not possible).

Idea: for any i, let $S[1 . . i]$ be the prefix of S of length i. $D(S[1 . . i], C)$ can be computed from all the $D\left(S[1 . . j], C^{\prime}\right)$ values, where $j<i$.
$D(S[1 . . i], C)=\min _{X, j<i} D(S[1 . . j], C-X)+\operatorname{cost}(S[j+1 . . n], X)$
$C-X$ means reduces the number of X s by 1
$\operatorname{cost}(S[j+1 . . n], X)$ is the number of deletions to make the substring become X

The algorithm

- On input strings S, T
bestSolution $=\infty$
For each possible block count table C
Compute $D(S, C)$ using DP
Compute $D(T, C)$ using DP
If $D(S, C)+D(T, C)<$ bestSolution then bestSolution $=D(S, C)+D(T, C)$
- Complexity: dominated by the number of possible block count tables, which is $O\left(n^{\left.|F||\Sigma|^{\max (F)}\right)}\right.$

Down the theory rabbit hole: NP-hardness for given F

Complexity status

F	Σ	Complexity
Fixed	Not fixed	NP-hard (unless F is trivial)
Fixed	Fixed	P (but horrible)
Not fixed	Not fixed	$?$
Not fixed	Fixed	$?$

Complexity status

F	Σ	Complexity
Fixed	Not fixed	NP-hard (unless F is trivial)
Fixed	Fixed	P (but horrible)
Not fixed	Not fixed	NP-hard
Not fixed	Fixed	NP-hard

Exact F-Strip Recovery, given F

Theorem

If F is part of the input, then the Exact F-Strip recovery problem is NP-hard, even if given two strings on alphabet of size 4.

Exact F-Strip Recovery, given F

Theorem

If F is part of the input, then the Exact F-Strip recovery problem is NP-hard, even if given two strings on alphabet of size 4.

Reduction from 3-Partition.

- Given a set of numbers S and an integer D, partition S into triples that all have the same sum D.

Exact F-Strip Recovery, given F

Theorem
If F is part of the input, then the Exact F-Strip recovery problem is NP-hard, even if given two strings on alphabet of size 4.

Reduction from 3-Partition.

- Given a set of numbers S and an integer D, partition S into triples that all have the same sum D.
- $S=\left\{a_{1}, \ldots, a_{3 m}\right\}, D=>$ string A, B and allowed sizes F

Exact F-Strip Recovery, given F

Reduction from 3-Partition.

- Given a set of numbers S and an integer D, partition S into triples that all have the same sum D.
- $S=\left\{a_{1}, \ldots, a_{3 m}\right\}, D=>$ string A, B and allowed sizes F

$$
F=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\}
$$

$$
\begin{array}{r}
A=\overbrace{\$ \ldots \$}^{D+1} \overbrace{1 \ldots 1}^{a_{1}} \overbrace{\$ \ldots . . \$ \overbrace{1 \ldots 1}^{D+1} \ldots \overbrace{\$ \ldots \$}^{a_{2}} \overbrace{1.1}^{D+1} \overbrace{\# \ldots \#}^{a_{3}} \overbrace{0 \ldots 0}^{D+1},}^{B=\overbrace{\# \ldots \#}^{D+1} \overbrace{\$ \ldots \$}^{m(D+1)}} \overbrace{(0 \ldots 0}^{D+1)} \overbrace{1 \ldots 1)^{m}}^{D} .
\end{array}
$$

Conclusion

- Experiments? Nope.
- It remains to explore the potential of strip recovery to find syntenies in practice.
- Exact algorithms? Probably not.
- Need approximation, good heuristics, ILP, ...

THX

