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Synteny : block of at least two genes that was conserved 
across multiple species.

Leptospira strains syntenies

Image taken from Ramli et al.: https://doi.org/10.3390/pathogens10091198
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Synteny : block of at least two genes that was conserved 
across multiple species.

Human vs pig synteny map

Image taken from Kim et al.: https://doi.org/10.1186/1471-2164-13-711 



Synteny : block of at least two genes that was conserved across 
multiple species.

To find syntenic blocks between two genomes 𝑆 and 𝑇:

- Partition genes into homologous families

- Represent 𝑆 and 𝑇 as strings (each symbol = 1 gene family)

- Partition 𝑆 and 𝑇 into identical substrings (blocks)
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Usual formulation: Minimum Common String Partition (MCSP)

Given strings 𝑆, 𝑇, split them into two identical (multi)sets of 
blocks, while minimizing the number of blocks.
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The Exact Strip Recovery problem

Given two strings 𝑆, 𝑇 and min block size 𝑏, does there exist a 
common partition of 𝑆 and 𝑇 in which the size of each block 
is at least 𝑏?
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common partition of 𝑆 and 𝑇 in which the size of each block 
is at least 𝑏?

The Min-Strip Recovery Problem

Given two strings 𝑆, 𝑇 and min block size 𝑏, delete a minimum 
number of characters from the strings, so that they admit a 
common partition with blocks of size at least 𝑏.
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• This paper: polynomial time on fixed alphabets



Past results

• Exact Strip Recovery

• Exact Recovery = special case with 0 deletions allowed

• Easy if input strings are permutation (no duplicates)

• Otherwise, complexity = open problem [Bulteau & Weller 2019]



Past results

• Exact Strip Recovery

• Exact Recovery = special case with 0 deletions allowed

• Easy if input strings are permutation (no duplicates)

• Otherwise, complexity = open problem [Bulteau & Weller 2019]

• This paper: NP-hard if genes have duplicates



NP-hardness of
a generalized Exact-Strip Recovery problem



The Exact Strip Recovery problem

Given two strings 𝑆, 𝑇 and min block size 𝑏, does there exist a 
common partition of 𝑆 and 𝑇 in which the size of each block 
is at least 𝑏?



𝒃 = 𝟐 : the answer is yes if and only if there is a common 
partition with block sizes in {2, 3}
Intuition: size 4 block = 2+2, size 5 block = 2+3, …
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The Exact Strip Recovery problem

Given two strings 𝑆, 𝑇 and min block size 𝑏, does there exist a 
common partition of 𝑆 and 𝑇 in which the size of each block 
is at least 𝑏?



𝒃 = 𝟐 : the answer is yes if and only if there is a common 
partition with block sizes in {2, 3}

𝒃 = 𝟑 : the answer is yes if and only if there is a common 
partition with block sizes in {3,4,5}

𝒃 = 𝟒 : the answer is yes if and only if there is a common 
partition with block sizes in {4,5,6,7}

The Exact Strip Recovery problem

Given two strings 𝑆, 𝑇 and min block size 𝑏, does there exist a 
common partition of 𝑆 and 𝑇 in which the size of each block 
is at least 𝑏?



Lemma
For any infinite set 𝐹 of allowed block sizes, there exists a finite 
set 𝐹’ such that the strip recovery problem with allowed block 
sizes 𝐹 or 𝐹’ are equivalent (i.e. admit same set of solutions).

The Exact Strip Recovery problem

Given two strings 𝑆, 𝑇 and min block size 𝑏, does there exist a 
common partition of 𝑆 and 𝑇 in which the size of each block 
is at least 𝑏?



Lemma
For any infinite set 𝐹 of allowed block sizes, there exists a finite 
set 𝐹’ such that the strip recovery problem with allowed block 
sizes 𝐹 or 𝐹’ are equivalent (i.e. admit same set of solutions).

• We might as well generalize to arbitrary allowed block sizes 𝑭.

The Exact Strip Recovery problem

Given two strings 𝑆, 𝑇 and min block size 𝑏, does there exist a 
common partition of 𝑆 and 𝑇 in which the size of each block 
is at least 𝑏?



The Exact F-Strip Recovery problem (XSR-F)

Input: two strings 𝑆, 𝑇
Question: does there exist a common partition of 𝑆 and 𝑇 in 
which the size of each block is in 𝐹?

Here, 𝐹 is a fixed set of integers.
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solved in polynomial time.
For any other 𝑭, the problem is NP-hard, even if each symbol 
occurs at most 6 times in the input strings.
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Theorem (continued)
For any other 𝑭, the problem is NP-hard, even if each symbol 
occurs at most 6 times in the input strings.

(in particular, hard for 𝐹 = {2,3} representing blocks sizes of size 
at least 2)



Reduction from Positive Cubic 1-in-3 SAT to XSR-F with string sets.
• Given a boolean formula in which each clause has 3 positive

variables and each variable 𝑥𝑖 occurs exactly three times.
• Goal: assign 𝑥𝑖’s to true or false so that for each clause, exactly

one of its variables is true.

𝑥1 ˅ 𝑥2 ˅ 𝑥3 ˄ 𝑥1 ˅ 𝑥4 ˅ 𝑥5 ˄ 𝑥1 ˅ 𝑥2 ˅ 𝑥5 ˄ …  => 𝑆, 𝑇
Satisfiable iff Exact partition exists

Theorem (continued)
For any other 𝑭, the problem is NP-hard, even if each symbol 
occurs at most 6 times in the input strings.







Second step:
Reduction from XSR-F with string sets to XSR-F with single 
sequences.



A polynomial time algorithm for fixed 
alphabet and fixed F



The General F-Strip Recovery problem (GSR-F)

Input: two strings 𝑆, 𝑇
Goal: delete a minimum number of characters from 𝑆 and 𝑇 so
that the resulting strings admit a common partition into blocks 
of sizes in 𝐹.
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For the standard Σ = {A, C, G, T} and F = {2, 3}, this is 𝑂(𝑛131)

The General F-Strip Recovery problem (GSR-F)

Input: two strings 𝑆, 𝑇
Goal: delete a minimum number of characters from 𝑆 and 𝑇 so
that the resulting strings admit a common partition into blocks 
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If the alphabet Σ is fixed and 𝐹 is also fixed, then GSR-F can be 
solved in polynomial time. 

Time: 𝑂(𝑛 𝐹 Σ max 𝐹 +3)

Dynamic programming algorithm
Block = any string over Σ whose length is in 𝐹.
Block count table = table 𝐶 that assigns a number to each 
possible block.
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For a string 𝑆 and block count table 𝐶, 
𝐷(𝑆, 𝐶) = min number of deletions to make in S so that the 
resulting string can be split into blocks, such that the number of 
each block is the same as in C (or infinity if not possible).  

aaa aab aba abb baa bab bba bbb

0 0 1 0 1 0 2 0

a b b a b a a a a b a b b a

C:

D(S, C) = 2



The algorithm
• On input strings 𝑆, 𝑇

bestSolution = ∞
For each possible block count table 𝐶

Compute 𝐷(𝑆, 𝐶) using DP

Compute 𝐷(𝑇, 𝐶) using DP

If 𝐷(𝑆, 𝐶) + 𝐷(𝑇, 𝐶) < bestSolution then

bestSolution = 𝐷(𝑆, 𝐶) + 𝐷(𝑇, 𝐶)
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𝐷(𝑆, 𝐶) = min number of deletions to make in S so that the 
resulting string can be split into blocks, such that the number of 
each block is the same as in C (or infinity if not possible). 

Idea: for any 𝑖, let 𝑆[1. . 𝑖] be the prefix of 𝑆 of length 𝑖. 
𝐷(𝑆[1. . 𝑖], 𝐶) can be computed from all the 𝐷(𝑆[1. . 𝑗], 𝐶’) values, 
where 𝑗 < 𝑖.

𝐷 𝑆 1. . 𝑖 , 𝐶 = 𝑚𝑖𝑛𝑋,𝑗<𝑖 𝐷 𝑆 1. . 𝑗 , 𝐶 − 𝑋 + 𝑐𝑜𝑠𝑡 𝑆 𝑗 + 1. . 𝑛 , 𝑋

𝐶 – 𝑋 means reduces the number of Xs by 1
𝑐𝑜𝑠𝑡(𝑆[𝑗 + 1. . 𝑛], 𝑋) is the number of deletions to make the substring become 𝑋



The algorithm
• On input strings 𝑆, 𝑇

bestSolution = ∞
For each possible block count table 𝐶

Compute 𝐷(𝑆, 𝐶) using DP

Compute 𝐷(𝑇, 𝐶) using DP

If 𝐷(𝑆, 𝐶) + 𝐷(𝑇, 𝐶) < bestSolution then

bestSolution = 𝐷(𝑆, 𝐶) + 𝐷(𝑇, 𝐶)

• Complexity: dominated by the number of possible block 

count tables, which is 𝑂(𝑛 𝐹 Σ max 𝐹
)



Down the theory rabbit hole: NP-hardness 
for given 𝐹
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(unless F is trivial)
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(but horrible)
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Not fixed Fixed NP-hard
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Exact F-Strip Recovery, given F

𝐹 = {𝑎1, 𝑎2, … , 𝑎3𝑚}

Reduction from 3-Partition.
• Given a set of numbers 𝑆 and an integer 𝐷, partition 𝑆 into 

triples that all have the same sum 𝐷.
• 𝑆 = {𝑎1, … , 𝑎3𝑚}, 𝐷 =>  string 𝐴, 𝐵 and allowed sizes 𝐹



Conclusion

• Experiments?  Nope.
• It remains to explore the potential of strip recovery to find syntenies 

in practice.

• Exact algorithms?  Probably not.
• Need approximation, good heuristics, ILP, …



THX


