Accurate prediction of orthologs in the presence of divergence after duplication

MANUEL LAFOND, University of Ottawa >> Université de SherbrookeMONA M. MIARDAN, University of OttawaDAVID SANKOFF, University of Ottawa

In this talk

1. Orthology prediction is **difficult** when *divergence after duplication* occurs.

2. An **algorithmic framework** that supports divergence after duplication.

3. Experiments on simulated and real datasets.

Two genes are *orthologs* if they descend from an ancestral gene that has undergone **speciation**.

Two genes are *orthologs* if they descend from an ancestral gene that has undergone **speciation**.

Two genes are *orthologs* if they descend from an ancestral gene that has undergone **speciation**.

Two genes are *orthologs* if they descend from an ancestral gene that has undergone **speciation**.

So what???

Orthologs + paralogs are useful to reconstruct **gene trees** + **species trees**.

Orthologous genes can be used to *predict gene functionality*.

Orthologs conjecture:

- Orthologs tend to perform similar functions and share similar DNA sequences.
- Paralogs tend to *diverge* from the point of view of functions and DNA.

So what???

Orthologs + paralogs are useful to reconstruct **gene trees** + **species trees**.

Orthologous genes can be used to *predict gene functionality*.

Orthologs conjecture:

- Orthologs tend to perform similar functions and share similar DNA sequences.
- Paralogs tend to *diverge* from the point of view of functions and DNA.

And how do we find orthologs?

Similarity-based methods:

- Assume DNA similarity => Orthology.
- Build a *similarity graph* (edge weights = similarity).
- Cluster the genes into orthologous groups.

And how do we find orthologs?

Phylogeny-based methods:

- Build a gene tree.
- Identify speciation and duplication events.

And how do we find orthologs?

Phylogeny-based methods:

- Build a gene tree.
- Identify speciation and duplication events.

Some related work (non-exhaustive)

Similarity-based methods

- OrthoMCL
- ProteinOrtho
- OMA / OMA-GETHOGS
- OrthoFinder
- COG, eggNOG, InParanoid, and more ...

Phylogeny-based methods

- LOFT
- COCO-CL
- Reconciliation tools (e.g. NOTUNG)
- Cograph editing tools (Hellmuth group, L, El-Mabrouk, Dondi, ...)

*sorry if you think I should've mentioned your work here – if so, let me know!

After duplication, asymmetric rates of evolution may occur.

• *Standard model*: one copy keeps *same rate*, the other acquires *accelerated rate*.

	Category									
	Neofunc- tionalization	Kept	Novel	Gain-of- function	Neutral	Purifying selection	Neutral	α	β	
	DDC	Subfunc- tionalized	Subfunc- tionalized	Loss-of- function mutations	Neutral	Relaxed purifying selection	Relaxed purifying selection	β	β	a – sam
	Specialization or EAC	Subfunc- tionalized	Subfunc- tionalized	Gain-of- function mutations	Neutral	Relaxed purifying selection	Relaxed purifying selection	β	β	$\beta = fast$
	Category II									
	Positive dosage	Kept	Same as original	NA	Positive selection on duplication	NA	NA	α′	α'	
	Shielding against deleterious mutations	Kept	Same as original	NA	Positive selection on duplication	Relaxed purifying selection	Relaxed purifying selection	NA	NA	_
	Modified duplication	Kept	Novel	Gain-of- function mutations	Positive selection on duplication	NA	NA	α	β	
	Category III									
	Permanent heterozygote	Subfunc- tionalized	Subfunc- tionalized	Gain-of- function mutations	Positive selection on pre-duplicational variation	NA	NA	β	β	
	Adaptive radiation model	Kept	Novel	Gain-of- function mutations	Positive selection on pre-duplicational variation	NA	NA	α	β	
	Diversifying selection	Multiple functions	Multiple functions	Gain-of- function mutations	Positive selection on pre-duplicational variation	NA	NA	o	o	-
	Category IV									
	Dosage balance	Kept	Original	NA	NA	NA	NA	α′	α'	

Innan, Hideki, and Fyodor Kondrashov. "The evolution of gene duplications: classifying and distinguishing between models." Nature Reviews Genetics (2010).

After duplication, asymmetric rates of evolution may occur.

• Standard model: one copy keeps same rate, the other acquires accelerated rate.

After duplication, asymmetric rates of evolution may occur.

- *Standard model*: one copy keeps *same rate*, the other acquires *accelerated rate*.
- Not always the case, but *it does happen*.

After duplication, asymmetric rates of evolution may occur.

- Standard model: one copy keeps same rate, the other acquires accelerated rate.
- Not always the case, but *it does happen*.

• When it does, how well do orthology prediction methods fare?

Suppose this is the true history.

Suppose this is the true history.

b

С

Suppose this is the true history.

• (a,b) are "similar", but (a,c) and (b, c) are "not similar".

Suppose this is the true history.

• (a,b) are "similar", but (a,c) and (b, c) are "not similar".

Similarity-based methods might miss "non-similar" orthologs.

Phylogeny-based methods:

- will find all orthologs (if we are lucky)...
- but do not distinguish "similar" orthologs and "non-similar" orthologs.
- no good for functional analysis studies.

Phylogeny-based methods:

- will find all orthologs (if we are lucky)...
- but do not distinguish "similar" orthologs and "non-similar" orthologs.
- no good for functional analysis studies.

Objectives of this work

1. Find all orthologs even in the presence of divergence after duplication

- 2. Distinguish between "similar" orthologs, and "non-similar" orthologs.
 - Hereafter called *primary* and *secondary* orthologs, respectively.
 - Primary orthologs are potential *isoorthologs* and potential *equivalogs*.
 - **Isoorthologs :** orthologs that have retained their function up to their lowest common ancestor
 - **Equivalogs :** same definition, but not limited to orthologs

Algorithmic framework

DAD model (DAD = Divergence After Dup)

Assume that **every** duplication introduces exactly one **divergent edge**.

(yes, a bit extreme I know)

Call two genes primary orthologs if

- they are orthologs;
- there is no divergent edge on their unique path in the gene tree.

Call two genes **secondary orthologs** if they are orthologs but not primary.

DAD model (DAD = Divergence After Dup)

Assume that **every** duplication introduces exactly one **divergent edge**. • (yes, a bit extreme I know)

Call two genes primary orthologs if

- they are orthologs;
- there is no divergent edge on their unique path in the gene tree.

Call two genes **secondary orthologs** if they are orthologs but not primary.

DAD model (DAD = Divergence After Dup)

Assume that **every** duplication introduces exactly one **divergent edge**. • (yes, a bit extreme I know)

Call two genes primary orthologs if

- they are orthologs;
- there is no divergent edge on their unique path in the gene tree.

Call two genes **secondary orthologs** if they are orthologs but not primary.

Characterizing primary orthologs

Proposition

Under the DAD model, **primary orthology** is an **equivalence relation**

(i.e. primary orthologs form *a collection of disjoint cliques*).

Characterizing primary orthologs

Proposition

Under the DAD model, primary orthology is an equivalence relation

(i.e. primary orthologs form *a collection of disjoint cliques*).

Characterizing primary orthologs

Proposition

Under the DAD model, primary orthology is an equivalence relation

(i.e. primary orthologs form *a collection of disjoint cliques*).

"Corollary"

Similarity-based methods that find 1-to-1 orthologs find the primary orthologs.

HyPPO framework

HyPPO = Hybrid Prediction of Paralogs and Orthologs

Given a gene family:

- 1. Calculate scores between each gene pair based on DNA.
- 2. Compute the cliques of primary orthologs.
- 3. Infer the inter-cluster orthologs (the secondary orthologs).
 - If we are not careful, may result in **non-sensical** orthologs.
 - A **species tree** is needed for this step (why? see paper).

HyPPO = **Hy**brid **P**rediction of **P**aralogs and **O**rthologs

Experimental results

Simulated datasets

Using *SimPhy + INDELible*:

- Generated 40 species trees on [30-50] leaves.
- For each species tree, generated 10 gene families (gene trees).
 - Simulates speciation, duplication and losses (with random nucleotide evolutionary model).
 - Parameters evaluated: dup/loss rates, substitution rate, dup-divergence rate.

Dataset	Dup rate	Loss rate	Substitution rate	Nb trees
Standard	5e-7	5e-7	5e-6	10 species trees, 100 gene trees
Eventful	<u>1e-7</u>	<u>1e-7</u>	5e-6	10 species trees, 100 gene trees
Fast	5e-7	5e-7	<u>5e-5</u>	10 species trees, 100 gene trees
Slow	5e-7	5e-7	<u>5e-7</u>	10 species trees, 100 gene trees

Simulating divergence after duplication

For each gene tree G, generate a gene tree G₂ by:

- choosing one divergent edge *e* per duplication
- multiplying the length of *e* by 2

Simulating divergence after duplication

For each gene tree G, generate a gene tree G₂ by:

- choosing one divergent edge *e* per duplication
- multiplying the length of *e* by 2

Did the same for G_8 and G_{50}

Dataset	Dup rate	Loss rate	Substitution rate	Nb trees	
Standard	5e-7	5e-7	5e-6	10 species trees, 100 gene trees x1 100 gene trees x2 100 gene trees x8 100 gene trees x50	
Eventful	<u>1e-7</u>	<u>1e-7</u>	5e-6	10 species trees, 100 gene trees x1 100 gene trees x2 100 gene trees x8 100 gene trees x50	
Fast	5e-7	5e-7	<u>5e-5</u>	10 species trees, 100 gene trees x1 100 gene trees x2 100 gene trees x8 100 gene trees x50	
Slow	5e-7	5e-7	<u>5e-7</u>	10 species trees, 100 gene trees x1 100 gene trees x2 100 gene trees x8 100 gene trees x50	

Methods considered

1. HyPPO: our whole pipeline

2. HyPPO + species tree: same, but true species tree known

3. OMA-GETHOGS: can predict primary orthologs.

4. OrthoMCL

of correct relations / # of gene pairs

Accuracy 0.95 0.9 0.85 0.8 0.75 0.7 STD1 STD2 STD8 STD50 EV1 EV2 EV8 EV50 FAST1 FAST2 FAST8 FAST50 SLOW1 SLOW2 SLOW8 SLOW50

Hyppo ■ HyPPO + Species Tree ■ OMA-GETHOGS ■ OrthoMCL

of correct relations / # of gene pairs

of correct relations / # of gene pairs

ISMB 2018

of correct relations / # of gene pairs

Accuracy 0.95 0.9 0.85 0.8 0.75 0.7 STD1 STD2 STD8 STD50 EV1 EV2 EV8 EV50 FAST1 FAST2 FAST8 FAST50 SLOW1 SLOW2 SLOW8 SLOW50

Hyppo ■ HyPPO + Species Tree ■ OMA-GETHOGS ■ OrthoMCL

Quality of primary orthologs

cluster score = primary orthologs correctly together (see paper)

Cluster scores

Averages on simulations

Precision = true pos / (true pos + false pos)

Recall = true pos / (true pos + false neg)

Method	Accuracy	Precision	Recall	Cluster score
НуРРО	.940	.911	.875	.915
HyPPO + species tree	.949	.924	.905	.915
OMA-GETHOGS	.877	.940	.699	.831
OrthoMCL	.812	.845	.496	.690

OMA has slightly better precision => less false pos HyPPO has better recall => more orthologs found

SwissTree dataset

Gold standard manually curated gene trees

- 8 Eukaryote gene trees evaluated
 - POP, NOX, VATB, SERC, SUMF, HOX, ARX, CITE
- Speciation + duplication events known => orthologs/paralogs
- Primary orthologs not known

Accuracy on empirical datasets

Accuracy on empirical datasets

HyPPO is bad on VATB because it has mostly orthologs (95% pairs), and HyPPO infers a duplication at the root and predicts ~50% paralogs.

Averages on SwissTrees

Precision = true pos / (true pos + false pos)

Recall = true pos / (true pos + false neg)

Method	Accuracy	Precision	Recall
НуРРО	.860	.941	.785
HyPPO + species tree	.905	.945	.881
OMA-GETHOGS	.837	.950	.711
OrthoMCL	.800	.859	.680

OMA has slightly better precision => less false pos HyPPO has better recall => more orthologs found

Future work

Consider other post-duplication behavior.

- Duplication does not *always* introduce divergence.
- A more fine-grained classification of orthologs.

Make HyPPO more scalable.

Open algorithmic problem: reconstruct a species from orthology clusters.

• Main bottleneck in HyPPO.