HOW BROKERS CAN OPTIMALLY ABUSE TRADERS

Manuel Lafond

GameStop (GME)

In foreign exchanges

EUR/USD chart

- when you buy, the broker sells
- When you sell, the broker buys

-1.07770 -1.07640 -1.07510 (it^{it)} -1.07380 1.07250-1.06990-1.06860-1.06730 -1.06600 1.06470 -1.06340

Bitcoin/USD

Market Summary > Bitcoin

31,274.90 USD

How Crypto Investors Can Avoid the Scam That Captured \$2.8 Billion in 2021

Robinhood restricts trading in GameStop, other names involved in frenzy

Where do you think the Brokers EARN their Profits from?

Broker conspiracies

- Buying or selling assets \rightarrow Brokers handle transaction
- Have access to all open trades
- Large institutions (possibly) able to manipulate prices
- **Premise** : when traders lose money, their brokers make profit

Broker conspiracies

- **Premise** : when traders lose money, their brokers make profit
- **Goal**: how to help evil brokers as much as possible.
 - Assume total control over prices
 - Maximize trader losses (maximize broker profits)

Broker conspiracies

- **Premise** : when traders lose money, their brokers make profit
- **Goal**: how to help evil brokers as much as possible.
 - Assume total control over prices
 - Maximize trader losses (maximize broker profits)
- How is that FUN?!
 - No quant finance. That's boring! (at least for me)
 - Only combinatorial problems.

time

The Maximum Trader Abuse problem

Trade = tuple (w, l, p_w , p_l)

- w =winning price
- l = losing price

 $p_w = \text{profit} \text{ at price } w$

 $p_l = \text{profit} \text{ at price } l \text{ (negative)}$

Input: a set of trades *T*.

<u>**Goal</u>**: find a price movement *M* that maximizes total profit (must close every trade).</u>

The Maximum Trader Abuse problem

Trade = tuple (w, l, p_w , p_l)

- w =winning price
- l = losing price

 $p_w = \text{profit} \text{ at price } w$

 $p_l = \text{profit} \text{ at price } l \text{ (negative)}$

Input: a set of trades *T*.

<u>**Goal</u>**: find a price movement *M* that maximizes total profit (must close every trade).</u>

We study the Offline (15 mins) and Online (2 mins) setting.

The offline setting

Compatible trades

Definition

Two trades T_1 , T_2 are *compatible* if there exists a price movement that wins both trades. Otherwise, they are *incompatible*.

Compatible trades

Definition

Two trades T_1 , T_2 are *compatible* if there exists a price movement that wins both trades. Otherwise, they are *incompatible*.

<u>Lemma</u>

Two trades $T_1 = (w_1, l_1, p_w, p_l)$ and $T_2 = (w_2, l_2, q_w, q_l)$ are incompatible if and only if

- w_1 and w_2 have a different sign
- $|l_1| \le |w_2|$ and $|l_2| \le |w_1|$

• w_1 and w_2 have a different sign • $|l_1| \le |w_2|$ and $|l_2| \le |w_1|$

Definition

Given a set of trades *T*, the *trade conflict graph* G(T) is the graph whose vertices are *T*, and T_1, T_2 share an edge iff they are incompatible.

<u>Lemma</u>

Consider G(T) with vertex weights α where, for each trade $T_i = (w, l, p_w, p_l)$, we put $\alpha(T_i) = p_w - p_l$. Then a maximum weight independent set of G(T) corresponds to a set of trades that are won by an optimal price movement.

<u>Lemma</u>

Consider G(T) with vertex weights α where, for each trade $T_i = (w, l, p_w, p_l)$, we put $\alpha(T_i) = p_w - p_l$. Then a maximum weight independent set of G(T) corresponds to a set of trades that are won by an optimal price movement.

<u>Lemma</u>

The trade conflict graph G(T) is bipartite.

Proof : the trades won at price > 0 are compatible and thus form an independent set. Same with the trades won at price < 0.

Theorem

The maximum trader abuse problem reduces to finding a maximum weight independent set in a bipartite graph.

Solvable in time $O(n^3)$ or O(nm) using flow techniques.

Theorem

The maximum trader abuse problem reduces to finding a maximum weight independent set in a bipartite graph.

Solvable in time $O(n^3)$ or O(nm) using flow techniques.

Question: can we characterize the trade conflict graph G(T) to obtain something better? (and more interesting?)

Project each trade (w, l, p_w, p_l) as a point on the 2D plane. With coordinate x = min(w, l) and y = max(w, l). Color the point green if w > 0 and red if w < 0.

Bicolored plane domination graphs

- Colored point = triple (x, y, c)
- *x*, *y* are plane coordinates
- *c* is a color, either red or green

Bicolored plane domination graphs

- Colored point = triple (x, y, c)
- *x*, *y* are plane coordinates
- *c* is a color, either red or green

Colored point (x, y, c) dominates (x', y', c') if $x \ge x'$ and $y \ge y'$ (i.e. it's diagonally up-right)

Definition

A graph *G* is a bicolored plane domination graph if there exists a set of colored points *P* such that V(G) = P, and (x, y, c), (x', y', c') share an edge if and only if $c \neq c'$ and the **green** point dominates the **red** point.

Theorem

A graph *G* is a trade conflict graph for some set of trades if and only if *G* is a bicolored plane domination graph.

Theorem

A graph *G* is a trade conflict graph for some set of trades if and only if *G* is a bicolored plane domination graph.

Useful to get an $O(n^2)$ time algorithm.

<u>Lemma</u>

Let G be a bicolored plane domination graph. Then G admits a colored point representation that has the *permutation matrix property*, i.e. :

- each x, y coordinate is in $\{1, 2, ..., n\}$
- each row has exactly one point, each column has exactly one point

Max-weight independent set on

bicolored plane domination graphs

- Can be done in time $O(n^2)$
- Dynamic programming on the permutation matrix grid representation.
- Compute from bottom-right corner to top-left corner.

 $I(i,j) = \max \text{ weight indset of the subgrid from } (n,0) \text{ corner to } (i,j)$

 $I(i,j) = \max$ weight indset of the subgrid from (n,0) corner to (i,j) $x_i = x$ coordinate of unique point on row j

$$I(i,j) = \begin{cases} I(i,j+1) & \text{if } x_j > i \\ h((x_j,j,c_j)) + I(i,j+1) & \text{if } x_j \le i \text{ and } c_j \text{ is green} \\ \max(I(i,j+1), h(R(x_j,i,j)) + I(x_j-1,j+1)) & \text{if } x_j \le i \text{ and } c_j \text{ is red} \end{cases}$$

Question

Given a bicolored plane domination graph, can a max-weight independent set be computed in O(n) time?

The grid has only *n* points. We waste $O(n^2)$ on grid locations without points.

Question

Can we characterize trade conflict graphs, i.e. bicolored plane domination graphs?

Are they equivalent to some known graph class?

Question

Can we characterize trade conflict graphs, i.e. bicolored plane domination graphs?

Are they equivalent to some known graph class?

Paper says: they're chordal bipartite (bipartite + no cycle of lengths 6 or more).

Belief: somewhere between chordal bipartite and permutation graphs.

The online setting

Online model

In reality, new trades can appear at any moment. Traders can close their trades at any moment.

Online model

In reality, new trades can appear at any moment. Traders can close their trades at any moment.

Two-player game: broker and trader. Each turn:

- 1) Trader can open any trade, close any trade.
- 2) Broker move the price up (+1) or down (-1)

Online model

In reality, new trades can appear at any moment. Traders can close their trades at any moment.

Two-player game: broker and trader. Each turn:

- 1) Trader can open any trade, close any trade.
- 2) Broker move the price up (+1) or down (-1)

Rules:

- Broker's decisions are not based on the past events.
- If trade set is empty, price returns to 0.
- Trade profits must be linear.
 - For each trade, there is a *d* such that *profit* = *d* * (*open close*)

There is only good broker strategy

Max potential strategy: on the broker's turn at price p, calculate: - The profit \$⁺ made if trader closed everything at price p + 1- The profit \$⁻ made if trader closed everything at price p - 1

If ⁺> ⁻, move the price up, otherwise move the price down.

There is only good broker strategy

Max potential strategy: on the broker's turn at price p, calculate: - The profit \$⁺ made if trader closed everything at price p + 1- The profit \$⁻ made if trader closed everything at price p - 1

If ⁺> ⁻, move the price up, otherwise move the price down.

One of \$⁺ or \$⁻ is at least 0.

Broker can't lose money. If trader makes a mistake, positive profit is always achievable.

Theorem

If the broker uses any strategy other than always moving the price in the direction of maximum potential profit, then an optimal trader can make the broker bankrupt.

Theorem

If the broker uses any strategy other than always moving the price in the direction of maximum potential profit, then an optimal trader can make the broker bankrupt.

Intuition : a suboptimal move from broker means negative potential profit. If that happens, trader closes everything at negative (broker) profit, and repeats the pattern infinitely.

▶ **Theorem 12.** Suppose that the trader is restricted to linear online trades. Let \mathcal{T}_i be a set of open trades at the start of the *i*-th turn, let p_i be the current price, and let profit(i) be the total profit of the broker at the start of turn *i*. Then the following holds:

- 1. if $profit(i) + potent(\mathcal{T}_i, p_i) \ge 0$, then if the broker applies the maximum potential strategy from turn i and onwards, it achieves a total profit of at least $profit(i) + potent(\mathcal{T}_i, p_i)$ against any trader. Moreover, this is the maximum possible profit achieved against a trader with optimal play, passive or not;
- 2. if the broker does not move the price in the direction of maximum potential profit on turn *i*, then the broker makes a profit that is strictly less than $profit(i) + potent(\mathcal{T}_i, p_i)$ against a trader with optimal play, passive or not;
- **3.** if $profit(i) + potent(\mathcal{T}_i, p_i) < 0$, then the broker incurs an infinite negative profit against a trader with optimal play, passive or not.

Conclusion

- Finally, brokers can optimally abuse traders!
- Future
 - Extend trading model (randomness)
 - Improve algorithm
 - Characterize graph class

• THX