EDITING GRAPHS TO SATISFY DIVERSITY REQUIREMENTS

Huda Chuangpishit Manuel Lafond Lata Narayanan

MIN-EDIT-COST PROBLEM

Modify a minimum number of edges so that everyone is satisfied.

MIN-EDIT-COST PROBLEM

Modify a minimum number of edges so that everyone is satisfied.

1 edge insertion + 2 edge deletions

MAX-SATISFIED-NODES PROBLEM

Edit *r* edges to maximize the number of satisfied people (*r* is given).

MAX-SATISFIED-NODES PROBLEM

Edit *r* edges to maximize the number of satisfied people (*r* is given).

r = 2

Motivation: make multicultural workgroups

More formally

- Given
 - A graph G = (V, E) and a coloring function $c : V \rightarrow [k]$
 - For each $v \in V$ and each $i \in [k]$, a degree lower bond $d_i(v)$
 - For each $v \in V$, a total degree upper bound $\beta(v)$
- A node v is satisfied if
 - for each $i \in [k]$, v has at least $d_i(v)$ neighbors of color i
 - v has at most $\beta(v)$ neighbors

More formally

- Given
 - A graph G = (V, E) and a coloring function $c : V \rightarrow [k]$
 - For each $v \in V$ and each $i \in [k]$, a degree lower bond $d_i(v)$
 - For each $v \in V$, a total degree upper bound $\beta(v)$
- A node v is satisfied if
 - for each $i \in [k]$, v has at least $d_i(v)$ neighbors of color i
 - v has at most $\beta(v)$ neighbors
- MIN-EDIT-COST: insert/remove a minimum number of edges so that every v ∈ V is satisfied.
- MAX-SATISFIED-NODES: insert/remove at most *r* edges to satisfy a maximum number of people.

- Many graph editing problems: minimum modifications to ...
 - belong to graph class

•

- e.g. bipartite [Yannakakis, 1981], cograph [Liu & al., 2011], outerplanar, ...
- obtain a regular graph [Cornuéjols, 1988] (polynomial-time!)
 - Or kind-of regular (anonymization) [Liu & Terzi, 2008]
- obtain a **specific graph** (graph edit distance) [Neuhaus-Bunke, 2005]
- obtain a given degree sequence [Golovach & Mertzios, 2012]

• To make each vertex v of degree of required degree r(v)

- To make each vertex v of degree of required degree r(v)
 - Polynomial time [Mathieson & Szeider, 2012]

- To make each vertex v of degree of required degree r(v)
 - Polynomial time [Mathieson & Szeider, 2012]
 - Variant: possibles degrees for v is a set R(v) of integers.
 - NP-hard in general.
 - In P if only deletions allowed and R(v) is an interval (cf [Korte & Vygen, 2008]).

- To make each vertex v of degree of required degree r(v)
 - Polynomial time [Mathieson & Szeider, 2012]
 - Variant: possibles degrees for v is a set R(v) of integers.
 - NP-hard in general.
 - In P if only deletions allowed and R(v) is an interval (cf [Korte & Vygen, 2008]).
 - Insertions + deletions + R(v) is an interval = UNKNOWN

- To make each vertex v of degree of required degree r(v)
 - Polynomial time [Mathieson & Szeider, 2012]
 - Variant: possibles degrees for v is a set R(v) of integers.
 - NP-hard in general.
 - In P if only deletions allowed and R(v) is an interval (cf [Korte & Vygen, 2008]).
 - Insertions + deletions + R(v) is an interval = **polytime**

- To make each vertex v of degree of required degree r(v)
 - Polynomial time [Mathieson & Szeider, 2012]
 - Variant: possibles degrees for v is a set R(v) of integers.
 - NP-hard in general.
 - In P if only deletions allowed and R(v) is an interval (cf [Korte & Vygen, 2008]).
 - Insertions + deletions + R(v) is an interval = **polytime**
- Degree editing problems on colored graphs = ???

In the paper

- MIN-EDIT-COST: insert/remove a minimum number of edges so that every v ∈ V is satisfied.
 - Can be solved in time O(n⁵ log n)
 - Two colors case in time $O(n^3 \log n \log \log n)$

In the paper

- MIN-EDIT-COST: insert/remove a minimum number of edges so that every v ∈ V is satisfied.
 - Can be solved in time O(n⁵ log n)
 - Two colors case in time *O*(*n*³ *log n log log n*)
- MAX-SATISFIED-NODES: insert/remove at most *r* edges to satisfy a maximum number of people.
 - W[1]-hard for parameter r + I(I = number of people to satisfy)
 - ½ approximation with no degree upper bounds
 - 1/(9k) approximation with degree upper bounds

- Reduction to Min-Cost Flow
- Given: a directed graph with source/sink s and t, and in which each arc e has
 - A cost c_e
 - A capacity u_e
 - A lower bound I_e
- Find: a weight w_e assignment on arcs s.t.
 - each vertex has total weight-in = total weight-out (a flow)

• $I_e \le w_e \le u_e$

• The sum of costs $c_e w_e$ is minimized

Our instance (*a*,*b*) means (want *a* more, max-degree *b*)

Our instance (*a*,*b*) means (want *a* more, max-degree *b*)

- Reduction to Min-Cost Flow
- *a-b* means $l_e = a$, $u_e = b$
- Solid middle edges have

 $l_e = u_e = 1$ and $c_e = 0$

- Dashed edges have $l_e = 0, u_e = 1 \text{ and } c_e = 1$

Our instance (*a,b*) means (want *a* more, max-degree *b*)

- Reduction to Min-Cost Flow
- *a-b* means $I_e = a$, $u_e = b$
- Solid middle edges have

$$I_e = U_e = 1$$
 and $C_e = 0$

- Dashed edges have $I_e = 0$, $u_e = 1$ and $c_e = 1$

Solution of cost 2. Using a dashed backwards edge = deleting the edge Using a dashed forward edge = inserting the edge

Takes time O(n³ log n log log n) to solve [Ahuja & al, 1992]

Our instance (*a,b*) means (want *a* more, max-degree *b*)

- Reduction to Min-Cost Flow
- *a-b* means $I_e = a$, $u_e = b$
- Solid middle edges have

$$I_e = u_e = 1$$
 and $c_e = 0$

- Dashed edges have $l_e = 0$, $u_e = 1$ and $c_e = 1$

Solution of cost 2. Using a dashed backwards edge = deleting the edge Using a dashed forward edge = inserting the edge

- Idea: weighted perfect matching reduction
- Transform G into H such that G has edit cost c iff H has a perfect matching of cost c. (weights of H edges are 0-1)

- Each vertex v has at most $\beta(v)$ neighbors.
- Make $\beta(v)$ copies of v, each representing a potential neighbor in a solution.

- Each vertex v has at most $\beta(v)$ neighbors.
- Make $\beta(v)$ copies of v, each representing a potential neighbor in a solution.

- Each vertex v has at most $\beta(v)$ neighbors.
- Make $\beta(v)$ copies of v, each representing a potential neighbor in a solution.

Add gadgets between relevant colors.

MAX-SATISFIED-NODES PROBLEM

Edit *r* edges to maximize the number of satisfied people (*r* is given).

r = 2

MAX-SATISFIED-NODES

- W[1]-hardness from Balanced BiClique [Lin, SODA2015]
 - Given bipartite graph $G = (A \cup B, E)$ and integer q, is there a complete bipartite graph with q nodes on each side.

MAX-SATISFIED-NODES

- W[1]-hardness from Balanced BiClique [Lin, SODA2015]
 - Given bipartite graph $G = (A \cup B, E)$ and integer q, is there a complete bipartite graph with q nodes on each side.

Take complement

Make each node want *q* more neighbors of other color.

Can we add *q*² edges and satisfy *2q* guys?

MAX-SATISFIED-NODES

- W[1]-hardness from Balanced BiClique [Lin, SODA2015]
 - Given bipartite graph $G = (A \cup B, E)$ and integer q, is there a complete bipartite graph with q nodes on each side.

Take complement

Make each node want *q* more neighbors of other color.

Can we add *q*² edges and satisfy *2q* guys?

YES iff G has a 2qbiclique.

¹/₂ approx with no degree upper bounds

1/2 approx with no degree upper bounds

- req(v) = # of edges to edit if we only want to satisfy v
 - Easy to compute
- Node v is satisfied iff req(v) = 0

¹/₂ approx with no degree upper bounds

- req(v) = # of edges to edit if we only want to satisfy v
 Easy to compute
- Node *v* is satisfied iff req(v) = 0
- Order $V(G) = \{v_1, v_2, ..., v_n\}$ s.t. $req(v_i) \le req(v_{i+1})$
- Editing edge $v_i v_j$ can, at best, lower $req(v_i)$ and $req(v_j)$ by 1
- We are allowed to edit at most *r* edges => If $\sum_{i=1}^{p+1} req(v_i) > 2r$ then we can't satisfy more than *p* nodes.

1/2 approx with no degree upper bounds

- If $\sum_{i=1}^{p+1} req(v_i) > 2r$ then we can't satisfy more than p nodes.
- Choose smallest p that verifies the above inequality.
- With no degree upper bounds, We are always able to satisfy the nodes v₁, v₂, ..., v_{p/2}
 - Just add $req(v_1)$ neighbors to v_1 of the appropriate colors until satisfaction.
 - Repeat with $v_2, ..., v_{p/2}$
 - Requires at most $\sum_{i=1}^{p/2} req(v_i) \le r$ modifications.

1/2 approx *with* degree upper bounds

- If $\sum_{i=1}^{p+1} req(v_i) > 2r$ then we can't satisfy more than p nodes.
- Choose smallest p that verifies the above inequality.
- With no degree upper bounds, We are always able to satisfy the nodes v₁, v₂, ..., v_{p/2}
 - Just add $req(v_1)$ neighbors to v_1 of the appropriate colors until satisfaction.
 - Repeat with v₂, ..., v_{p/2}
 - Requires at most $\sum_{i=1}^{p/2} req(v_i) \le r$ modifications.
- Doesn't work if we have upper bounds on degrees.

1/2 approx *with* degree upper bounds

- If $\sum_{i=1}^{p+1} req(v_i) > 2r$ then we can't satisfy more than p nodes.
- Choose smallest p that verifies the above inequality.
- If we have upper bounds, we'll only care about satisfying vertices in a single color class.
 - Choose color class containing the most vertices from v_1, \ldots, v_p
 - Satisfy ¼ of them (see paper for details)
 - Yields a *1/floor(8k)* ~ *1/(9k)* approx

Some perspectives

- Better approximation? 1/(9k) is probably not best possible
- Other parameters for FPT algorithms?
 - e.g. # of *un*satisfied nodes, or structural graph parameters
- Better algorithms for MinEditCost.
- Other nice **colored** graph editing problems?

Some perspectives

- Better approximation? 1/(9k) is probably not best possible
- Other parameters for FPT algorithms?
 - e.g. # of *un*satisfied nodes, or structural graph parameters
- Better algorithms for MinEditCost.
- Other nice **colored** graph editing problems?
- That's it, thanks!