
EDITING GRAPHS TO SATISFY

DIVERSITY REQUIREMENTS

Huda Chuangpishit Manuel Lafond Lata Narayanan

I’d really like to have 2 red friends!

I could learn from them.

But I only have time to maintain 3 friendships.

Wants:

≥ 2 red friends

≤ 3 friends total

Wants:

≥ 2 red friends

≤ 3 friends total

≥ 2 red friends

≤ 3 friends total

≥ 1 red friend

≤ 3 friends total

≥ 2 red friends

≤ 3 friends total

≥ 2 blue friends

≤ 2 friends total

≥ 2 blue friends

≤ 3 friends total

≥ 1 blue friends

≤ 2 friends total

≥ 2 red friends

≤ 3 friends total

≥ 1 red friend

≤ 3 friends total

≥ 2 red friends

≤ 3 friends total

≥ 2 blue friends

≤ 2 friends total

≥ 2 blue friends

≤ 3 friends total

≥ 1 blue friends

≤ 2 friends total

MIN-EDIT-COST PROBLEM

Modify a minimum number of edges so that everyone is satisfied.

≥ 2 red friends

≤ 3 friends total

≥ 1 red friend

≤ 3 friends total

≥ 2 red friends

≤ 3 friends total

≥ 2 blue friends

≤ 2 friends total

≥ 2 blue friends

≤ 3 friends total

≥ 1 blue friends

≤ 2 friends total

1 edge insertion + 2 edge deletions

MIN-EDIT-COST PROBLEM

Modify a minimum number of edges so that everyone is satisfied.

≥ 2 red friends

≤ 3 friends total

≥ 1 red friend

≤ 3 friends total

≥ 2 red friends

≤ 3 friends total

≥ 2 blue friends

≤ 2 friends total

≥ 2 blue friends

≤ 3 friends total

≥ 1 blue friends

≤ 2 friends total

MAX-SATISFIED-NODES PROBLEM

Edit r edges to maximize the number of satisfied people (r is given).

≥ 2 red friends

≤ 3 friends total

≥ 1 red friend

≤ 3 friends total

≥ 2 red friends

≤ 3 friends total

≥ 2 blue friends

≤ 2 friends total

≥ 2 blue friends

≤ 3 friends total

≥ 1 blue friends

≤ 2 friends total

MAX-SATISFIED-NODES PROBLEM

Edit r edges to maximize the number of satisfied people (r is given).

r = 2

Motivation: make multicultural workgroups

More formally

• Given

• A graph G = (V, E) and a coloring function c : V [k]

• For each v ∈ V and each i ∈ [k], a degree lower bond di(v)

• For each v ∈ V, a total degree upper bound β(v)

• A node v is satisfied if

• for each i ∈ [k], v has at least di(v) neighbors of color i

• v has at most β(v) neighbors

More formally

• Given

• A graph G = (V, E) and a coloring function c : V [k]

• For each v ∈ V and each i ∈ [k], a degree lower bond di(v)

• For each v ∈ V, a total degree upper bound β(v)

• A node v is satisfied if

• for each i ∈ [k], v has at least di(v) neighbors of color i

• v has at most β(v) neighbors

• MIN-EDIT-COST: insert/remove a minimum number of

edges so that every v ∈ V is satisfied.

• MAX-SATISFIED-NODES: insert/remove at most r edges

to satisfy a maximum number of people.

Related work

• Many graph editing problems: minimum modifications to …

• belong to graph class

• e.g. bipartite [Yannakakis, 1981], cograph [Liu & al., 2011], outerplanar, …

• obtain a regular graph [Cornuéjols, 1988] (polynomial-time!)

• Or kind-of regular (anonymization) [Liu & Terzi, 2008]

• obtain a specific graph (graph edit distance) [Neuhaus-Bunke, 2005]

• obtain a given degree sequence [Golovach & Mertzios, 2012]

• …

Related work

• To make each vertex v of degree of required degree r(v)

Related work

• To make each vertex v of degree of required degree r(v)

• Polynomial time [Mathieson & Szeider, 2012]

Related work

• To make each vertex v of degree of required degree r(v)

• Polynomial time [Mathieson & Szeider, 2012]

• Variant: possibles degrees for v is a set R(v) of integers.

• NP-hard in general.

• In P if only deletions allowed and R(v) is an interval (cf [Korte & Vygen,

2008]).

Related work

• To make each vertex v of degree of required degree r(v)

• Polynomial time [Mathieson & Szeider, 2012]

• Variant: possibles degrees for v is a set R(v) of integers.

• NP-hard in general.

• In P if only deletions allowed and R(v) is an interval (cf [Korte & Vygen,

2008]).

• Insertions + deletions + R(v) is an interval = UNKNOWN

Related work

• To make each vertex v of degree of required degree r(v)

• Polynomial time [Mathieson & Szeider, 2012]

• Variant: possibles degrees for v is a set R(v) of integers.

• NP-hard in general.

• In P if only deletions allowed and R(v) is an interval (cf [Korte & Vygen,

2008]).

• Insertions + deletions + R(v) is an interval = polytime

Related work

• To make each vertex v of degree of required degree r(v)

• Polynomial time [Mathieson & Szeider, 2012]

• Variant: possibles degrees for v is a set R(v) of integers.

• NP-hard in general.

• In P if only deletions allowed and R(v) is an interval (cf [Korte & Vygen,

2008]).

• Insertions + deletions + R(v) is an interval = polytime

• Degree editing problems on colored graphs = ???

In the paper

• MIN-EDIT-COST: insert/remove a minimum number of

edges so that every v ∈ V is satisfied.

• Can be solved in time O(n5 log n)

• Two colors case in time O(n3 log n log log n)

In the paper

• MIN-EDIT-COST: insert/remove a minimum number of

edges so that every v ∈ V is satisfied.

• Can be solved in time O(n5 log n)

• Two colors case in time O(n3 log n log log n)

• MAX-SATISFIED-NODES: insert/remove at most r edges

to satisfy a maximum number of people.

• W[1]-hard for parameter r + l (l = number of people to satisfy)

• ½ approximation with no degree upper bounds

• 1/(9k) approximation with degree upper bounds

Min-Edit-Cost (bipartite case)

• Reduction to Min-Cost Flow

• Given: a directed graph with source/sink s and t, and in

which each arc e has

• A cost ce

• A capacity ue

• A lower bound le

• Find: a weight we assignment on arcs s.t.

• each vertex has total weight-in = total weight-out (a flow)

• le ≤ we ≤ ue

• The sum of costs cewe is minimized

Min-Edit-Cost (bipartite case)

 2, 2

 2, 2

 2, 2

 2, 2
 1, 2

 1, 2

 1, 3

2

1

2

2

2

2

3

2 2

1 2

2 2

1 2

2 2

2 2

1 3

Our instance

(a,b) means

(want a more,

max-degree b)

- Reduction to Min-Cost Flow

- a-b means le = a, ue = b

- Solid middle edges have

le = ue = 1 and ce = 0

- Dashed edges have

le = 0, ue = 1 and ce = 1

Solution of cost 2.

Using a dashed backwards

edge = deleting the edge

Using a dashed forward

edge = inserting the edge

Min-Edit-Cost (bipartite case)

 2, 2

 2, 2

 2, 2

 2, 2
 1, 2

 1, 2

 1, 3

2

1

2

2

2

2

3

2 2

1 2

2 2

1 2

2 2

2 2

1 3

Our instance

(a,b) means

(want a more,

max-degree b)

- Reduction to Min-Cost Flow

- a-b means le = a, ue = b

- Solid middle edges have

le = ue = 1 and ce = 0

- Dashed edges have

le = 0, ue = 1 and ce = 1

Solution of cost 2.

Using a dashed backwards

edge = deleting the edge

Using a dashed forward

edge = inserting the edge

Min-Edit-Cost (bipartite case)

 2, 2

 2, 2

 2, 2

 2, 2
 1, 2

 1, 2

 1, 3

2

1

2

2

2

2

3

2 2

1 2

2 2

1 2

2 2

2 2

1 3

Our instance

(a,b) means

(want a more,

max-degree b)

- Reduction to Min-Cost Flow

- a-b means le = a, ue = b

- Solid middle edges have

le = ue = 1 and ce = 0

- Dashed edges have

le = 0, ue = 1 and ce = 1

Solution of cost 2.

Using a dashed backwards

edge = deleting the edge

Using a dashed forward

edge = inserting the edge

Min-Edit-Cost (bipartite case)

 2, 2

 2, 2

 2, 2

 2, 2
 1, 2

 1, 2

 1, 3

2

1

2

2

2

2

3

2 2

1 2

2 2

1 2

2 2

2 2

1 3

Our instance

(a,b) means

(want a more,

max-degree b)

- Reduction to Min-Cost Flow

- a-b means le = a, ue = b

- Solid middle edges have

le = ue = 1 and ce = 0

- Dashed edges have

le = 0, ue = 1 and ce = 1

Solution of cost 2.

Using a dashed backwards

edge = deleting the edge

Using a dashed forward

edge = inserting the edge

Takes time O(n3 log n log log n)

to solve [Ahuja & al, 1992]

Min-Edit-Cost (general case)

• Idea: weighted perfect matching reduction

• Transform G into H such that G has edit cost c

iff H has a perfect matching of cost c.

(weights of H edges are 0-1)

Min-Edit-Cost (general case)

• Each vertex v has at most β(v) neighbors.

• Make β(v) copies of v, each representing a potential

neighbor in a solution.

…

v

v1

v2

v3

vβ(v)

Min-Edit-Cost (general case)

• Each vertex v has at most β(v) neighbors.

• Make β(v) copies of v, each representing a potential

neighbor in a solution.

…

v

v1

v2

v3

vβ(v)

…

u1

u2

u3

uβ(v)

0

0 1 0

0

Addition gadget

(when uv not in E)

Min-Edit-Cost (general case)

• Each vertex v has at most β(v) neighbors.

• Make β(v) copies of v, each representing a potential

neighbor in a solution.

…

v

v1

v2

v3

vβ(v)

…

u1

u2

u3

uβ(v)

0

1

0

Deletion gadget

(when uv in E)

Min-Edit-Cost (general case)

• Add gadgets between relevant colors.

 1 u

t 1

t 2

t 0

 del u, v del v, u

v0

 0
add

 u, add u, add , u
0
add

 , u

 0

c 2

c v 1

 2 u

 u

≥ 2 red friends

≤ 3 friends total

≥ 1 red friend

≤ 3 friends total

≥ 2 red friends

≤ 3 friends total

≥ 2 blue friends

≤ 2 friends total

≥ 2 blue friends

≤ 3 friends total

≥ 1 blue friends

≤ 2 friends total

MAX-SATISFIED-NODES PROBLEM

Edit r edges to maximize the number of satisfied people (r is given).

r = 2

MAX-SATISFIED-NODES

• W[1]-hardness from Balanced BiClique [Lin, SODA2015]

• Given bipartite graph G = (A U B, E) and integer q, is there a

complete bipartite graph with q nodes on each side.

MAX-SATISFIED-NODES

• W[1]-hardness from Balanced BiClique [Lin, SODA2015]

• Given bipartite graph G = (A U B, E) and integer q, is there a

complete bipartite graph with q nodes on each side.

Take complement

Make each node want q

more neighbors of other

color.

Can we add q2 edges

and satisfy 2q guys?

MAX-SATISFIED-NODES

• W[1]-hardness from Balanced BiClique [Lin, SODA2015]

• Given bipartite graph G = (A U B, E) and integer q, is there a

complete bipartite graph with q nodes on each side.

Take complement

Make each node want q

more neighbors of other

color.

Can we add q2 edges

and satisfy 2q guys?

YES iff G has a 2q-

biclique.

½ approx with no degree upper bounds

½ approx with no degree upper bounds

• req(v) = # of edges to edit if we only want to satisfy v

• Easy to compute

• Node v is satisfied iff req(v) = 0

½ approx with no degree upper bounds

• req(v) = # of edges to edit if we only want to satisfy v

• Easy to compute

• Node v is satisfied iff req(v) = 0

• Order V(G) = {v1, v2, …, vn} s.t. req(vi) ≤ req(vi+1)

• Editing edge vivj can, at best, lower req(vi) and req(vj) by 1

• We are allowed to edit at most r edges =>

If σ𝑖=1
𝑝+1

𝑟𝑒𝑞 𝑣𝑖 > 2𝑟 then we can't satisfy more than p nodes.

½ approx with no degree upper bounds

• If σ𝑖=1
𝑝+1

𝑟𝑒𝑞 𝑣𝑖 > 2𝑟 then we can't satisfy more than p nodes.

• Choose smallest p that verifies the above inequality.

• With no degree upper bounds, We are always able to satisfy

the nodes v1, v2, …, vp/2

• Just add req(v1) neighbors to v1 of the appropriate colors until

satisfaction.

• Repeat with v2, …, vp/2

• Requires at most σ𝑖=1
𝑝/2

𝑟𝑒𝑞 𝑣𝑖 ≤ 𝑟 modifications.

½ approx *with* degree upper bounds

• If σ𝑖=1
𝑝+1

𝑟𝑒𝑞 𝑣𝑖 > 2𝑟 then we can't satisfy more than p nodes.

• Choose smallest p that verifies the above inequality.

• With no degree upper bounds, We are always able to satisfy

the nodes v1, v2, …, vp/2

• Just add req(v1) neighbors to v1 of the appropriate colors until

satisfaction.

• Repeat with v2, …, vp/2

• Requires at most σ𝑖=1
𝑝/2

𝑟𝑒𝑞 𝑣𝑖 ≤ 𝑟 modifications.

• Doesn't work if we have upper bounds on degrees.

½ approx *with* degree upper bounds

• If σ𝑖=1
𝑝+1

𝑟𝑒𝑞 𝑣𝑖 > 2𝑟 then we can't satisfy more than p nodes.

• Choose smallest p that verifies the above inequality.

• If we have upper bounds, we'll only care about satisfying

vertices in a single color class.

• Choose color class containing the most vertices from v1, …, vp

• Satisfy ¼ of them (see paper for details)

• Yields a 1/floor(8k) ~ 1/(9k) approx

Some perspectives

• Better approximation? 1/(9k) is probably not best possible

• Other parameters for FPT algorithms?

• e.g. # of *un*satisfied nodes, or structural graph parameters

• Better algorithms for MinEditCost.

• Other nice colored graph editing problems?

Some perspectives

• Better approximation? 1/(9k) is probably not best possible

• Other parameters for FPT algorithms?

• e.g. # of *un*satisfied nodes, or structural graph parameters

• Better algorithms for MinEditCost.

• Other nice colored graph editing problems?

• That's it, thanks!

