EDITING GRAPHS TO SATISFY DIVERSITY REQUIREMENTS

Huda Chuangpishit Manuel Lafond Lata Narayanan

Ryerson
University

$$
\vdots
$$

$$
\vdots
$$

I'd really like to have 2 red friends! I could learn from them. But I only have time to maintain 3 friendships.

Wants:
≥ 2 red friends ≤ 3 friends total

Wants:
≥ 2 red friends ≤ 3 friends total

MIN-EDIT-COST PROBLEM

Modify a minimum number of edges so that everyone is satisfied.

MIN-EDIT-COST PROBLEM

Modify a minimum number of edges so that everyone is satisfied.
≥ 2 red friends
≤ 3 friends total
≥ 1 red friend
≤ 3 friends total
≥ 2 red friends
≤ 3 friends total

≥ 2 blue friends ≤ 2 friends total
≥ 2 blue friends ≤ 3 friends total
≥ 1 blue friends
≤ 2 friends total

1 edge insertion +2 edge deletions

MAX-SATISFIED-NODES PROBLEM

Edit \boldsymbol{r} edges to maximize the number of satisfied people (r is given).

MAX-SATISFIED-NODES PROBLEM

Edit \boldsymbol{r} edges to maximize the number of satisfied people (r is given).

$$
r=2
$$

≥ 2 red friends
≤ 3 friends total
≥ 1 red friend
≤ 3 friends total
≥ 2 red friends
≤ 3 friends total

≥ 2 blue friends ≤ 2 friends total
≥ 2 blue friends ≤ 3 friends total
≥ 1 blue friends
≤ 2 friends total

Motivation: make multicultural workgroups

More formally

- Given
- A graph $G=(V, E)$ and a coloring function $c: V \rightarrow[k]$
- For each $v \in V$ and each $i \in[k]$, a degree lower bond $d_{i}(v)$
- For each $v \in V$, a total degree upper bound $\beta(v)$
- A node v is satisfied if
- for each $i \in[k], v$ has at least $d_{i}(v)$ neighbors of color i
- v has at most $\beta(v)$ neighbors

More formally

- Given
- A graph $G=(V, E)$ and a coloring function $c: V \rightarrow[k]$
- For each $v \in V$ and each $i \in[k]$, a degree lower bond $d_{i}(v)$
- For each $v \in V$, a total degree upper bound $\beta(v)$
- A node v is satisfied if
- for each $i \in[k], v$ has at least $d_{i}(v)$ neighbors of color i
- v has at most $\beta(v)$ neighbors
- MIN-EDIT-COST: insert/remove a minimum number of edges so that every $v \in V$ is satisfied.
- MAX-SATISFIED-NODES: insert/remove at most r edges to satisfy a maximum number of people.

Related work

- Many graph editing problems: minimum modifications to ...
- belong to graph class
- e.g. bipartite [Yannakakis, 1981], cograph [Liu \& al., 2011], outerplanar, ...
- obtain a regular graph [Cornuéjols, 1988] (polynomial-time!)
- Or kind-of regular (anonymization) [Liu \& Terzi, 2008]
- obtain a specific graph (graph edit distance) [Neuhaus-Bunke, 2005]
- obtain a given degree sequence [Golovach \& Mertzios, 2012]
- ...

Related work

- To make each vertex v of degree of required degree $r(v)$

Related work

- To make each vertex v of degree of required degree $r(v)$
- Polynomial time [Mathieson \& Szeider, 2012]

Related work

- To make each vertex v of degree of required degree $r(v)$
- Polynomial time [Mathieson \& Szeider, 2012]
- Variant: possibles degrees for v is a set $R(v)$ of integers.
- NP-hard in general.
- In P if only deletions allowed and $R(v)$ is an interval (cf [Korte \& Vygen, 2008]).

Related work

- To make each vertex v of degree of required degree $r(v)$
- Polynomial time [Mathieson \& Szeider, 2012]
- Variant: possibles degrees for v is a set $R(v)$ of integers.
- NP-hard in general.
- In P if only deletions allowed and $R(v)$ is an interval (cf [Korte \& Vygen, 2008]).
- Insertions + deletions $+R(v)$ is an interval $=$ UNKNOWN

Related work

- To make each vertex v of degree of required degree $r(v)$
- Polynomial time [Mathieson \& Szeider, 2012]
- Variant: possibles degrees for v is a set $R(v)$ of integers.
- NP-hard in general.
- In P if only deletions allowed and $R(v)$ is an interval (cf [Korte \& Vygen, 2008]).
- Insertions + deletions + R(v) is an interval = polytime

Related work

- To make each vertex v of degree of required degree $r(v)$
- Polynomial time [Mathieson \& Szeider, 2012]
- Variant: possibles degrees for v is a set $R(v)$ of integers.
- NP-hard in general.
- In P if only deletions allowed and $R(v)$ is an interval (cf [Korte \& Vygen, 2008]).
- Insertions + deletions + R(v) is an interval = polytime
- Degree editing problems on colored graphs = ???

In the paper

- MIN-EDIT-COST: insert/remove a minimum number of edges so that every $v \in V$ is satisfied.
- Can be solved in time $O\left(n^{5} \log n\right)$
- Two colors case in time $O\left(n^{3} \log n \log \log n\right)$

In the paper

- MIN-EDIT-COST: insert/remove a minimum number of edges so that every $v \in V$ is satisfied.
- Can be solved in time $O\left(n^{5} \log n\right)$
- Two colors case in time $O\left(n^{3} \log n \log \log n\right)$
- MAX-SATISFIED-NODES: insert/remove at most r edges to satisfy a maximum number of people.
- W[1]-hard for parameter $r+I$ ($/=$ number of people to satisfy)
- $1 / 2$ approximation with no degree upper bounds
- 1/(9k) approximation with degree upper bounds

Min-Edit-Cost (bipartite case)

- Reduction to Min-Cost Flow
- Given: a directed graph with source/sink s and t, and in which each arc e has
- A cost c_{e}
- A capacity u_{e}
- A lower bound I_{e}
- Find: a weight w_{e} assignment on arcs s.t.
- each vertex has total weight-in = total weight-out (a flow)
- $l_{e} \leq w_{e} \leq u_{e}$
- The sum of costs $c_{e} w_{e}$ is minimized

Min-Edit-Cost (bipartite case)

Our instance (a,b) means
(want a more, max-degree b)

Min-Edit-Cost (bipartite case)

Our instance (a, b) means (want a more, max-degree b)

- Reduction to Min-Cost Flow
- $a-b$ means $I_{e}=a, u_{e}=b$
- Solid middle edges have

$$
l_{e}=u_{e}=1 \text { and } c_{e}=0
$$

- Dashed edges have $l_{e}=0, u_{e}=1$ and $c_{e}=1$

Min-Edit-Cost (bipartite case)

Our instance (a, b) means (want a more, max-degree b)

- Reduction to Min-Cost Flow Solution of cost 2.
- $a-b$ means $I_{e}=a, u_{e}=b$
- Solid middle edges have $I_{e}=u_{e}=1$ and $c_{e}=0$
- Dashed edges have $l_{e}=0, u_{e}=1$ and $c_{e}=1$

Using a dashed backwards edge = deleting the edge Using a dashed forward edge = inserting the edge

Min-Edit-Cost (bipartite case)

Takes time $O\left(n^{3} \log n \log \log n\right)$ to solve [Ahuja \& al, 1992]

Our instance (a,b) means (want a more, max-degree b)

- Reduction to Min-Cost Flow Solution of cost 2.
- $a-b$ means $I_{e}=a, u_{e}=b$
- Solid middle edges have $l_{e}=u_{e}=1$ and $c_{e}=0$
- Dashed edges have $l_{e}=0, u_{e}=1$ and $c_{e}=1$

Using a dashed backwards edge $=$ deleting the edge Using a dashed forward edge $=$ inserting the edge

Min-Edit-Cost (general case)

- Idea: weighted perfect matching reduction
- Transform G into H such that G has edit cost c iff H has a perfect matching of cost c.
(weights of H edges are 0-1)

Min-Edit-Cost (general case)

- Each vertex v has at most $\beta(v)$ neighbors.
- Make $\beta(v)$ copies of v, each representing a potential neighbor in a solution.

Min-Edit-Cost (general case)

- Each vertex v has at most $\beta(v)$ neighbors.
- Make $\beta(v)$ copies of v, each representing a potential neighbor in a solution.

Min-Edit-Cost (general case)

- Each vertex v has at most $\beta(v)$ neighbors.
- Make $\beta(v)$ copies of v, each representing a potential neighbor in a solution.

Min-Edit-Cost (general case)

- Add gadgets between relevant colors.

MAX-SATISFIED-NODES PROBLEM

Edit \boldsymbol{r} edges to maximize the number of satisfied people (r is given).

$$
r=2
$$

≥ 2 red friends
≤ 3 friends total
≥ 1 red friend
≤ 3 friends total
≥ 2 red friends
≤ 3 friends total

≥ 2 blue friends ≤ 2 friends total
≥ 2 blue friends ≤ 3 friends total
≥ 1 blue friends
≤ 2 friends total

MAX-SATISFIED-NODES

- W[1]-hardness from Balanced BiClique [Lin, SODA2015]
- Given bipartite graph $G=(A \cup B, E)$ and integer q, is there a complete bipartite graph with q nodes on each side.

MAX-SATISFIED-NODES

- W[1]-hardness from Balanced BiClique [Lin, SODA2015]
- Given bipartite graph $G=(A \cup B, E)$ and integer q, is there a complete bipartite graph with q nodes on each side.

Take complement

Make each node want q more neighbors of other color.

Can we add q^{2} edges and satisfy $2 q$ guys?

MAX-SATISFIED-NODES

- W[1]-hardness from Balanced BiClique [Lin, SODA2015]
- Given bipartite graph $G=(A \cup B, E)$ and integer q, is there a complete bipartite graph with q nodes on each side.

Take complement

Make each node want q more neighbors of other color.

Can we add q^{2} edges and satisfy $2 q$ guys?

YES iff G has a $2 q$ biclique.
$1 ⁄ 2$ approx with no degree upper bounds

$1 ⁄ 2$ approx with no degree upper bounds

- req(v) = \# of edges to edit if we only want to satisfy v
- Easy to compute
- Node v is satisfied iff req(v) $=0$

$1 ⁄ 2$ approx with no degree upper bounds

- req(v) = \# of edges to edit if we only want to satisfy v
- Easy to compute
- Node v is satisfied iff req(v) $=0$
- $\operatorname{Order} V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ s.t. $r e q\left(v_{i}\right) \leq r e q\left(v_{i+1}\right)$
- Editing edge $v_{i} v_{j}$ can, at best, lower $r e q\left(v_{i}\right)$ and $r e q\left(v_{j}\right)$ by 1
- We are allowed to edit at most r edges $=>$

If $\sum_{i=1}^{p+1} r e q\left(v_{i}\right)>2 r$ then we can't satisfy more than p nodes.

$1 ⁄ 2$ approx with no degree upper bounds

- If $\sum_{i=1}^{p+1} r e q\left(v_{i}\right)>2 r$ then we can't satisfy more than p nodes.
- Choose smallest p that verifies the above inequality.
- With no degree upper bounds, We are always able to satisfy the nodes $v_{1}, v_{2}, \ldots, v_{p / 2}$
- Just add req(v_{1}) neighbors to v_{1} of the appropriate colors until satisfaction.
- Repeat with $\mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p} / 2}$
- Requires at most $\sum_{i=1}^{p / 2} r e q\left(v_{i}\right) \leq r$ modifications.

$1 ⁄ 2$ approx *with* degree upper bounds

- If $\sum_{i=1}^{p+1} r e q\left(v_{i}\right)>2 r$ then we can't satisfy more than p nodes.
- Choose smallest p that verifies the above inequality.
- With no degree upper bounds, We are always able to satisfy the nodes $v_{1}, v_{2}, \ldots, v_{p / 2}$
- Just add req $\left(v_{1}\right)$ neighbors to v_{1} of the appropriate colors until satisfaction.
- Repeat with $\mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p} / 2}$
- Requires at most $\sum_{i=1}^{p / 2} r e q\left(v_{i}\right) \leq r$ modifications.
- Doesn't work if we have upper bounds on degrees.

$1 / 2$ approx *with* degree upper bounds

- If $\sum_{i=1}^{p+1} r e q\left(v_{i}\right)>2 r$ then we can't satisfy more than p nodes.
- Choose smallest p that verifies the above inequality.
- If we have upper bounds, we'll only care about satisfying vertices in a single color class.
- Choose color class containing the most vertices from v_{1}, \ldots, v_{p}
- Satisfy $1 / 4$ of them (see paper for details)
- Yields a $1 /$ floor ($8 k$) ~ 1/(9k) approx

Some perspectives

- Better approximation? $1 /(9 \mathrm{k})$ is probably not best possible
- Other parameters for FPT algorithms?
- e.g. \# of *un*satisfied nodes, or structural graph parameters
- Better algorithms for MinEditCost.
- Other nice colored graph editing problems?

Some perspectives

- Better approximation? $1 /(9 \mathrm{k})$ is probably not best possible
- Other parameters for FPT algorithms?
- e.g. \# of *un*satisfied nodes, or structural graph parameters
- Better algorithms for MinEditCost.
- Other nice colored graph editing problems?
- That's it, thanks!

