ON THE WEIGHTED QUARTET CONSENSUS PROBLEM

Manuel Lafond¹

Celine Scornavacca²

1 University of Ottawa, Canada

2 Institut des sciences de l'evolution de l'Université de Montpellier, France

The plan

- 1. What is a quartet ?
- 2. The weighted quartet consensus problem
- 3. NP-hardness
- 4. 'Randomized' 1/2 approximation algorithm
- 5. Derandomization

Quartet

Unrooted binary tree of four labeled leaves.

This quartet is denoted **ab|cd**.

Quartet

Three possible quartets on {a,b,c,d}:

ab|cd ac|bd ad|bc

Quartet in a tree

A tree **T contains ab|cd** if ab|cd is a subtree of T (in the minor sense, with labels preservation).

Equivalently, the **a-b path does not intersect the c-d** path (no shared vertex).

Quartet in a tree

A tree **T contains ab|cd** if ab|cd is a subtree of T (in the minor sense, with labels preservation).

Equivalently, the **a-b path does not intersect the c-d** path (no shared vertex).

Quartet in a tree

A tree **T contains ab|cd** if ab|cd is a subtree of T (in the minor sense, with labels preservation).

Equivalently, the **a-b path does not intersect the c-d** path (no shared vertex).

Quartet consistency

Given: a set of quartets Q. **Task:** find a tree T that contains every quartet in Q.

Quartet consistency

Given: a set of quartets Q. Task: find a tree T that contains a maximum number of quartet from Q.

Infer many gene trees (assumed to be binary). The species tree should be a « consensus » of these trees \Rightarrow Replace the genes by the species that contains them.

Infer many gene trees (assumed to be binary). The species tree should be a « consensus » of these trees \Rightarrow Replace the genes by the species that contains them.

{1,2,3,4,5} is the set of species We assume every tree is now on leafset {1,2,3,4,5}

Now, combine these trees into a consensus.

List each of the $\binom{n}{4}$ quartets contained in each tree \Rightarrow Multiset of quartets Q **Goal:** find a tree that contains a **maximum number of quartets of Q** (in the multiset sense).

List each of the $\binom{n}{4}$ quartets contained in each tree \Rightarrow Multiset of quartets Q **Goal:** find a tree that contains a **maximum number of quartets of Q** (in the multiset sense).

> 12|34 12|35 12|45 23|45 13|42 13|45 13|25 13|25 13|25 13|25 13|45 32|45

List each of the $\binom{n}{4}$ quartets contained in each tree \Rightarrow Multiset of quartets Q **Goal:** find a tree that contains a **maximum number of quartets of Q** (in the multiset sense).

 12|34

 12|35

 12|45

 23|45

 13|42

 13|25

 34|25

 13|24

 13|25

 34|25

 13|25

 34|25

 13|24

 13|25

 13|25

 13|45

 32|45

Tree contains 9 quartets from Q (note that some quartets are counted twice)

Weighted quartet consensus (WQC)

Given: a set of trees $T_1, ..., T_k$ on the same leafset. **Goal:** find a tree that contains a **maximum number of quartets from**

quartets(T₁) ⊎ ... ⊎ quartets(T_k)

 \biguplus denotes multiset union

Weighted quartet consensus (WQC)

Given: a set of trees $T_1, ..., T_k$ on the same leafset. **Goal:** find a tree that contains a **maximum number of quartets from**

quartets(T₁) ⊎ ... ⊎ quartets(T_k)

Why the name "weighted quartet consensus"?

Each quartet can be given a weight in [0..1] based on its frequency in the input trees.

e.g. ab|cd 0.24 ac|bd 0.47 ad|bc 0.29

We want to find a tree that maximizes the sum of the weights of its quartets.

Some history

If input quartets **Q** can be anything

- NP-hard to find a tree with all quartets, Max SNP-hard to maximize [Steel, 1992]
- Many heuristics [Strimmet & von Haeseler, 1996, Berry et al., 1999, ...]

Some history

If input quartets **Q** can be anything

- NP-hard to find a tree with all quartets, Max SNP-hard to maximize [Steel, 1992]
- Many heuristics [Strimmet & von Haeseler, 1996, Berry et al., 1999, ...]

If input quartets **Q** are dense

- Meaning, Q has exactly one quartet for each 4 labels
- Easy to check if some tree contains all of Q
- NP-hard to maximize the number of quartets of Q in a tree [Jiang & al., 2001]
- Polynomial-time approximation scheme (PTAS) [Jiang & al., 2001]
- FPT in time O(4^kn + n⁴) [Gramm & Niedermeier, 2001], improved in [Chang, 2008]

Some history

If input quartets **Q** can be anything

- NP-hard to find a tree with all quartets, Max SNP-hard to maximize [Steel, 1992]
- Many heuristics [Strimmet & von Haeseler, 1996, Berry et al., 1999, ...]

If input quartets **Q** are dense

- Meaning, Q has exactly one quartet for each 4 labels
- Easy to check if some tree contains all of Q
- NP-hard to maximize the number of quartets of Q in a tree [Jiang & al., 2001]
- Polynomial-time approximation scheme (PTAS) [Jiang & al., 2001]
- FPT in time O(4^kn + n⁴) [Gramm & Niedermeier, 2001], improved in [Chang, 2008]

If input quartets **Q come from trees on the same set of leaf labels (our setting)**

- Minimization version of WQC: minimize number of quartets to **discard from the multiset** to have a tree containing all remaining quartets [Bansa & al., 2011]
 - Conjectured that WQC is NP-hard
 - 2-approximation: return the best input tree
- ASTRAL heuristic [Mirarab & al., 2014] (actually also a 2-approx.)
 - Conjectured that WQC is NP-hard

In this work

- We resolve this conjecture by proving that WQC is NP-hard.
- We devise a 1/2-approximation algorithm

Cyclic ordering problem

Given: a set S of n elements and a set C of ordered triples (a,b,c) of elements of S **Task:** does there exist a linear ordering of S such that for each (a,b,c) \in C, we have either a < b < c or b < c < a or c < b < a?

In other words, can the elements of S be arranged in a circle and contain every triple of C when read clockwise?

Cyclic ordering problem

Given: a set S of n elements and a set C of ordered triples (a,b,c) of elements of S **Task:** does there exist a linear ordering of S such that for each (a,b,c) \in C, we have either a < b < c or b < c < a or c < b < a?

In other words, can the elements of S be arranged in a circle and contain every triple of C when read clockwise?

e.g. (a, b, c)		č	a		
(d, a, b)	е				b
(e, b, c)					
(c, a, b)		С		d	

Cyclic ordering problem

Given: a set S of n elements and a set C of ordered triples (a,b,c) of elements of S **Task:** does there exist a linear ordering of S such that for each (a,b,c) \in C, we have either a < b < c or b < c < a or c < b < a?

In other words, can the elements of S be arranged in a circle and contain every triple of C when read clockwise?

NP-hard [Galil & Megiddo, 1977]

Reduction: main gadget = W-Z trees

Every tree is on leafset W + Z + S, where **W** and Z are huge (e.g. n^{100} leaves) and S = {s₁, ..., s_n}

Each input tree has the s_i's linearly ordered.

Idea₁: the solution will also have such a linear order, corresponding to the cyclic ordering instance.

Idea₂: only the quartets of the form $ws_i | s_k z$ matter ($w \in W, z \in Z, s_i, s_k \in S$)

Reduction: main gadget = W-Z trees

Idea₃: for each triple $(a,b,c) \in C$, make some W-Z trees that will enforce an optimal tree to order a < b < c or b < c < a or c < b < a in the 'middle'.

 $(a,b,c) \in C \implies 6$ input trees

 $(a,b,c) \in C \implies 6$ input trees

In the first pair of trees, **walbz** appears in both trees.

For every other pair s_i , s_k , **both** $ws_i | s_k z$ and $ws_k | s_i z$ appear.

So this tree pair makes wa|bz, and only wa|bz, important.

 $(a,b,c) \in C \implies 6$ input trees

 $(a,b,c) \in C \implies 6$ input trees

Ideally, our optimal solution T would contain all important quartets. This is never possible.

Can we settle for a tree that contains 2 of these important quartets?

Possible if and only a < b < c, b < c < a or c < a < b

For each triple $(a,b,c) \in C$, make 6 input W-Z trees that will make either a < b < c or b < c < a or c < b < a good in a solution.

There exists a linear ordering of S satisfying every $(a,b,c) \in C$ if and only if there exists a tree containing all the **good** orderings (i.e. containing **2 of the 3 important quartets** defined by each set of 6 trees).

Minimization version of WQC:

Weighted Minimum Quartet Inconsistency (WMQI)

Given: a set of trees T_1, \ldots, T_k on the same leafset. **Goal:** find a tree T that minimizes the number of quartets of

quartets(T_1) \biguplus ... \biguplus quartets(T_k)

that are not in T (multiple occurrences are counted multiple times).

Minimization version of WQC:

Weighted Minimum Quartet Inconsistency (WMQI)

Given: a set of trees T_1, \ldots, T_k on the same leafset. **Goal:** find a tree T that minimizes the number of quartets of

quartets(T_1) \biguplus ... \biguplus quartets(T_k)

that are not in T (multiple occurrences are counted multiple times).

Factor 2 approximation: Return T_i that minimizes the number of quartets not in the input.

Min-version WMQI has a 2-approximation (rejects, at worst, twice too many quartets)

Max-Version WQC has a Randomized 1/3-approximation: generate a random tree.

- Each input quartet has a 1/3 chance of being in the tree.
- More than just a 1/3-approx. : the random tree contains 1/3 of the input quartets (on expectation).

Lemma: for WQC, this is a 1/2-approximation algorithm:

Return the best of the WMQI 2-approx. or the WQC 1/3-approx.

Proof idea: if the WQC solution preserves 2/3 or less of the input quartets, the tree that contains 1/3 of the input quartets is a 1/2-approx. If the WQC solution preserves more than 2/3 of the input quartets, the WMQI 2-approx. rejects few quartets, and so preserves many: at least 1/2 as many as

the optimal solution (details => paper).

Annoying problem: the 1/3-approximation is a randomized algorithm – it only preserves 1/3 of the input quartets **on expectation**.

We derandomize this algorithm, using the method of conditional expectation.

Derandomization

Assume the output tree is rooted (not a technical problem).

Start with a completely unresolved tree.

If we resolve (i.e. binarize) randomly, each quartet appears with 1/3 probability.

Let us consider the first split of a solution.

Idea: we will look for a split that preserves 1/3 quartets, on expectation (we know such a split exists).

Let us consider the first split of a solution.

Idea: we will look for a split that preserves 1/3 quartets, on expectation (we know such a split exists).

Let's put 1 on the left (this choice is arbitrary).

Let us consider the first split of a solution.

Idea: we will look for a split that preserves 1/3 quartets, on expectation (we know such a split exists).

Let's put 1 on the left (this choice is arbitrary).

Now where should 2 go? Try both!

For each of the 2 options, view $\{3,4,5\}$ as randomly placed into either split with probability $\frac{1}{2}$.

Then we randomly resolve each "random split", yielding a probability on every input quartet.

For example, in this scenario,

Pr[T contains 12|34] = Pr[3,4 go left AND left split resolves into 12|34] +

Pr[3 goes left, 4 goes right AND left split resolves into 12|3] + Pr[3 goes right, 4 goes left AND left split resolves into 12|4] + Pr[3,4 go right]

For example, in this scenario,

Pr[T contains 12|34] = Pr[3,4 go left AND left split resolves into 12|34] +

Pr[3 goes left, 4 goes right AND left split resolves into 12|3] + Pr[3 goes right, 4 goes left AND left split resolves into 12|4] + Pr[3,4 go right]

= 1/4 * 1/3 + 1/4 * 1/3 + 1/4 * 1/3 + 1/4 = 1/2

For each scenario, compute $\sum_{q \in Q} Pr[T \text{ contains } q]$, and keep the scenario with maximum value.

One of these two "partial splits" will contain at least 1/3 of the input quartets, on expectation.

For each scenario, compute $\sum_{q \in Q} Pr[T \text{ contains } q]$, and keep the scenario with maximum value.

One of these two "partial splits" will contain at least 1/3 of the input quartets, on expectation.

Once a choice is made, proceed with the next label.

For each scenario, compute $\sum_{q \in Q} Pr[T \text{ contains } q]$, and keep the scenario with maximum value.

One of these two "partial splits" will contain at least 1/3 of the input quartets, on expectation.

Once a choice is made, proceed with the next label.

Once a split is complete, repeat recursively on the two splits.

At each decision we make in this algorithm, we maintain a conditional expectation of at least 1/3 \Rightarrow When we finish with a binary tree, it contains 1/3 quartets from the input.

```
Takes time O(k^2n^2 + kn^4 + n^5)
```

(n is the number of leaves, k is the number of input trees)

Conclusion

Are there better approximation algorithms (with a ratio above $\frac{1}{2}$)?

Is the WQC problem Max SNP-Hard?

What is the approximation ratio of the ASTRAL algorithm? (see paper)

Fixed parameter tractability of WQC? Any way to obtain an exact solution in reasonable time?

- Not too hard that the problem is FPT w.r.t. parameter
 q = # of quartets to discard from the input multiset
- Take time O^{*}(4^q), which is not reasonable.