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The plan

1.What is a quartet ?

2.The weighted quartet consensus problem

3.NP-hardness

4. ‘Randomized’ 1/2 approximation algorithm

5.Derandomization



Quartet
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Unrooted binary tree of four labeled leaves.

This quartet is denoted ab|cd.



Quartet
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Three possible quartets on {a,b,c,d}:

ab|cd ac|bd ad|bc
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Quartet in a tree
A tree T contains ab|cd if ab|cd is a subtree of T (in the minor sense, with labels 

preservation).

Equivalently, the a-b path does not intersect the c-d path (no shared vertex). 
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Quartet in a tree
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contains ab|cd

A tree T contains ab|cd if ab|cd is a subtree of T (in the minor sense, with labels 

preservation).

Equivalently, the a-b path does not intersect the c-d path (no shared vertex). 



Quartet in a tree
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does not 

contain ad|fg

A tree T contains ab|cd if ab|cd is a subtree of T (in the minor sense, with labels 

preservation).

Equivalently, the a-b path does not intersect the c-d path (no shared vertex). 



Quartet consistency
Given: a set of quartets Q.

Task: find a tree T that contains every quartet in Q.
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NP-hard [Steel, 1992]



Quartet consistency
Given: a set of quartets Q.

Task: find a tree T that contains a maximum number of quartet from Q.

c

d

a

b

d

g

a

f

e

b

a

c

?

NP-hard [Steel, 1992]

Max SNP-hard
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Where do these quartets come from?



Where do these quartets come from?
Infer many gene trees (assumed to be binary).

The species tree should be a « consensus » of these trees

 Replace the genes by the species that contains them.
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Where do these quartets come from?
Infer many gene trees (assumed to be binary).

The species tree should be a « consensus » of these trees

 Replace the genes by the species that contains them.

{1,2,3,4,5} is the set of species

We assume every tree is now on leafset {1,2,3,4,5}

Now, combine these trees into a consensus.
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Where do these quartets come from?
List each of the 𝑛

4
quartets contained in each tree

 Multiset of quartets Q

Goal: find a tree that contains a maximum number of quartets of Q (in the 

multiset sense).

1

2

3

4

5

1
3

4

2

5

12|34

12|35

12|45

23|45

13|42

13|45

13|25

34|25

13|24

13|25

13|45

32|45

1

2

3

4

5



Where do these quartets come from?
List each of the 𝑛

4
quartets contained in each tree

 Multiset of quartets Q

Goal: find a tree that contains a maximum number of quartets of Q (in the 

multiset sense).
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Where do these quartets come from?
List each of the 𝑛

4
quartets contained in each tree

 Multiset of quartets Q

Goal: find a tree that contains a maximum number of quartets of Q (in the 

multiset sense).

12|34

12|35

12|45

23|45

13|42

13|45

13|25

34|25

13|24

13|25

13|45

32|45

1

5

4

2

3

Tree contains 9 quartets from Q

(note that some quartets are 

counted twice)



Weighted quartet consensus (WQC)
Given: a set of trees T1, … Tk on the same leafset.

Goal: find a tree that contains a maximum number of quartets from

quartets(T1) ⊎ … ⊎ quartets(Tk) ⊎ denotes multiset union



Weighted quartet consensus (WQC)
Given: a set of trees T1, … Tk on the same leafset.

Goal: find a tree that contains a maximum number of quartets from

quartets(T1) ⊎ … ⊎ quartets(Tk) ⊎ denotes multiset union

Why the name “weighted quartet consensus”?

Each quartet can be given a weight in [0..1] based on its frequency in the input 

trees.

e.g.

ab|cd 0.24

ac|bd 0.47

ad|bc 0.29

We want to find a tree that maximizes the sum of the weights of its quartets.



Some history
If input quartets Q can be anything

• NP-hard to find a tree with all quartets, Max SNP-hard to maximize [Steel, 1992]

• Many heuristics [Strimmet & von Haeseler, 1996, Berry et al., 1999, …]



Some history
If input quartets Q can be anything

• NP-hard to find a tree with all quartets, Max SNP-hard to maximize [Steel, 1992]

• Many heuristics [Strimmet & von Haeseler, 1996, Berry et al., 1999, …]

If input quartets Q are dense

• Meaning, Q has exactly one quartet for each 4 labels

• Easy to check if some tree contains all of Q

• NP-hard to maximize the number of quartets of Q in a tree [Jiang & al., 2001]

• Polynomial-time approximation scheme (PTAS) [Jiang & al., 2001]

• FPT in time O(4kn + n4) [Gramm & Niedermeier, 2001], improved in [Chang, 2008]



Some history
If input quartets Q can be anything

• NP-hard to find a tree with all quartets, Max SNP-hard to maximize [Steel, 1992]

• Many heuristics [Strimmet & von Haeseler, 1996, Berry et al., 1999, …]

If input quartets Q are dense

• Meaning, Q has exactly one quartet for each 4 labels

• Easy to check if some tree contains all of Q

• NP-hard to maximize the number of quartets of Q in a tree [Jiang & al., 2001]

• Polynomial-time approximation scheme (PTAS) [Jiang & al., 2001]

• FPT in time O(4kn + n4) [Gramm & Niedermeier, 2001], improved in [Chang, 2008]

If input quartets Q come from trees on the same set of leaf labels (our setting)

• Minimization version of WQC: minimize number of quartets to discard from the 

multiset to have a tree containing all remaining quartets [Bansa & al., 2011]

• Conjectured that WQC is NP-hard

• 2-approximation: return the best input tree

• ASTRAL heuristic [Mirarab & al., 2014] (actually also a 2-approx.)

• Conjectured that WQC is NP-hard



In this work
- We resolve this conjecture by proving that WQC is NP-hard.

- We devise a 1/2-approximation algorithm



NP-hardness (idea)
Cyclic ordering problem

Given: a set S of n elements and a set C of ordered triples (a,b,c) of elements of S

Task: does there exist a linear ordering of S such that for each (a,b,c) ∈ C, we have 

either a < b < c or b < c < a or c < b < a?

In other words, can the elements of S be arranged in a circle and contain every 

triple of C when read clockwise?



NP-hardness (idea)
Cyclic ordering problem

Given: a set S of n elements and a set C of ordered triples (a,b,c) of elements of S

Task: does there exist a linear ordering of S such that for each (a,b,c) ∈ C, we have 

either a < b < c or b < c < a or c < b < a?

In other words, can the elements of S be arranged in a circle and contain every 

triple of C when read clockwise?

e.g.

(a, b, c)

(d, a, b)

(e, b, c)

(c, a, b)
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NP-hardness (idea)
Cyclic ordering problem

Given: a set S of n elements and a set C of ordered triples (a,b,c) of elements of S

Task: does there exist a linear ordering of S such that for each (a,b,c) ∈ C, we have 

either a < b < c or b < c < a or c < b < a?

In other words, can the elements of S be arranged in a circle and contain every 

triple of C when read clockwise?

NP-hard [Galil & Megiddo, 1977]



NP-hardness (idea)
Reduction: main gadget = W-Z trees

s1 s2 sn

…
W Z

Every tree is on leafset W + Z + S,

where W and Z are huge (e.g. n100 leaves)

and S = {s1, …, sn}

Each input tree has the si’s linearly ordered.

Idea1: the solution will also have such a linear order, corresponding to the 

cyclic ordering instance.

Idea2: only the quartets of the form wsi|skz matter       (w ∈ W, z ∈ Z, si,sk ∈ S)



NP-hardness (idea)
Reduction: main gadget = W-Z trees

s1 s2 sn

…
W Z

Idea3: for each triple (a,b,c) ∈ C, make some W-Z trees that will enforce

an optimal tree to order a < b < c or b < c < a or c < b < a in the ‘middle’.



NP-hardness (idea)

a b s’n - 2

…
W Z

(a,b,c) ∈ C  => 6 input trees
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NP-hardness (idea)

a b s’n - 2

…
W Z

(a,b,c) ∈ C  => 6 input trees

s’1 a bs’n - 2

…
W Z

s’1

In the first pair of trees, wa|bz appears in both trees.

For every other pair si, sk, both wsi|skz and wsk|siz appear.

So this tree pair makes wa|bz, and only wa|bz, important.



NP-hardness (idea)

a b s’n - 2

…
W Z

(a,b,c) ∈ C  => 6 input trees

s’1 a bs’n - 2

…
W Z

s’1

b c s’n - 2

…
W Z

s’1 b cs’n - 2

…
W Z

s’1
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…
W Z
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…
W Z
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wa|bz important

wb|cz important

wc|az important



NP-hardness (idea)
(a,b,c) ∈ C  => 6 input trees

ab

…
W Z

wa|bz important wb|cz important wc|az important

Ideally, our optimal solution T would contain all important quartets.

This is never possible.

Can we settle for a tree that contains 2 of these important quartets?

Possible if and only a < b < c, b < c < a or c < a < b

c

… … …

ac

…
W Z

b

… … …

Contains wb|cz and wc|az Contains only wc|az

b < c < a = Good c < b< a = Bad



NP-hardness (idea)

For each triple (a,b,c) ∈ C, make 6 input W-Z trees that will make either

a < b < c or b < c < a or c < b < a good in a solution.

There exists a linear ordering of S satisfying every (a,b,c) ∈ C

if and only if

there exists a tree containing all the good orderings

(i.e. containing 2 of the 3 important quartets defined by each set of 6 trees).



Approximation algorithm

Minimization version of WQC:

Weighted Minimum Quartet Inconsistency (WMQI)

Given: a set of trees T1, … Tk on the same leafset.

Goal: find a tree T that minimizes the number of quartets of

quartets(T1) ⊎ … ⊎ quartets(Tk)

that are not in T (multiple occurrences are counted multiple times).



Approximation algorithm

Minimization version of WQC:

Weighted Minimum Quartet Inconsistency (WMQI)

Given: a set of trees T1, … Tk on the same leafset.

Goal: find a tree T that minimizes the number of quartets of

quartets(T1) ⊎ … ⊎ quartets(Tk)

that are not in T (multiple occurrences are counted multiple times).

Factor 2 approximation: 

Return Ti that minimizes the number of quartets not in the input.



Approximation algorithm

Min-version WMQI has a 2-approximation (rejects, at worst, twice too many 

quartets)

Max-Version WQC has a Randomized 1/3-approximation: generate a random 

tree.

• Each input quartet has a 1/3 chance of being in the tree.

• More than just a 1/3-approx. : the random tree contains 1/3 of the input 

quartets (on expectation).

Lemma: for WQC, this is a 1/2-approximation algorithm:

Return the best of the WMQI 2-approx. or the WQC 1/3-approx.

Proof idea: if the WQC solution preserves 2/3 or less of the input quartets, the 

tree that contains 1/3 of the input quartets is a 1/2-approx.

If the WQC solution preserves more than 2/3 of the input quartets, the WMQI 

2-approx. rejects few quartets, and so preserves many: at least 1/2 as many as 

the optimal solution (details => paper).



Approximation algorithm

Annoying problem: the 1/3-approximation is a randomized algorithm – it only 

preserves 1/3 of the input quartets on expectation.

We derandomize this algorithm, using the method of conditional expectation.



Derandomization

Assume the output tree is rooted (not a technical problem).

Start with a completely unresolved tree.

If we resolve (i.e. binarize) randomly, each quartet appears with 1/3 probability.
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Derandomization

Let us consider the first split of a solution.

Idea: we will look for a split that preserves 1/3 quartets, on expectation (we know 

such a split exists).
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Derandomization

Let us consider the first split of a solution.

Idea: we will look for a split that preserves 1/3 quartets, on expectation (we know 

such a split exists).

Let’s put 1 on the left (this choice is arbitrary).
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Derandomization

Let us consider the first split of a solution.

Idea: we will look for a split that preserves 1/3 quartets, on expectation (we know 

such a split exists).

Let’s put 1 on the left (this choice is arbitrary).

Now where should 2 go?  Try both!
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Derandomization

For each of the 2 options, view {3,4,5} as randomly placed into either split with 

probability ½.

Then we randomly resolve each “random split”, yielding a probability on 

every input quartet.

12|34

12|35

12|45

23|45

13|42

13|45

13|25

34|25

13|24

13|25

13|45

32|45

1 2

3 4 5

1 2

3 4 5



Derandomization
For example, in this scenario, 

Pr[ T contains 12|34 ] = Pr[3,4 go left AND left split resolves into 12|34] + 

Pr[3 goes left, 4 goes right AND left split resolves into 12|3] + 

Pr[3 goes right, 4 goes left AND left split resolves into 12|4] + 

Pr[3,4 go right]
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Derandomization
For example, in this scenario, 

Pr[ T contains 12|34 ] = Pr[3,4 go left AND left split resolves into 12|34] +

Pr[3 goes left, 4 goes right AND left split resolves into 12|3] + 

Pr[3 goes right, 4 goes left AND left split resolves into 12|4] + 

Pr[3,4 go right]

= 1/4 * 1/3 + 1/4 * 1/3 + 1/4 * 1/3 + 1/4 = 1/2 
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Derandomization

For each scenario, compute σ𝒒 ∈𝑸 𝑷𝒓 𝑻 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒔 𝒒 , and keep the scenario with 

maximum value.

One of these two “partial splits” will contain at least 1/3 of the input quartets, on 

expectation.
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Derandomization

For each scenario, compute σ𝒒 ∈𝑸 𝑷𝒓 𝑻 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒔 𝒒 , and keep the scenario with 

maximum value.

One of these two “partial splits” will contain at least 1/3 of the input quartets, on 

expectation.

Once a choice is made, proceed with the next label.
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Derandomization

For each scenario, compute σ𝒒 ∈𝑸 𝑷𝒓 𝑻 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒔 𝒒 , and keep the scenario with 

maximum value.

One of these two “partial splits” will contain at least 1/3 of the input quartets, on 

expectation.

Once a choice is made, proceed with the next label.
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Derandomization

Once a split is complete, repeat recursively on the two splits.
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Derandomization

At each decision we make in this algorithm, we maintain a conditional 

expectation of at least 1/3

When we finish with a binary tree, it contains 1/3 quartets from the input.

Takes time O(k2n2 + kn4 + n5)

(n is the number of leaves, k is the number of input trees)



Conclusion

Are there better approximation algorithms (with a ratio above ½) ?

Is the WQC problem Max SNP-Hard?

What is the approximation ratio of the ASTRAL algorithm?  (see paper)

Fixed parameter tractability of WQC?  

Any way to obtain an exact solution in reasonable time?

• Not too hard that the problem is FPT w.r.t. parameter 

q =  # of quartets to discard from the input multiset

• Take time O*(4q), which is not reasonable.


