# ON THE WEIGHTED QUARTET CONSENSUS PROBLEM 

## Manuel Lafond ${ }^{1}$ <br> Celine Scornavacca²

1 University of Ottawa, Canada
2 Institut des sciences de l'evolution de l'Université de Montpellier, France

## The plan

1. What is a quartet?
2. The weighted quartet consensus problem
3. NP-hardness
4. 'Randomized' 1/2 approximation algorithm
5. Derandomization

## Quartet



Unrooted binary tree of four labeled leaves.
This quartet is denoted ab|cd.

## Quartet



Three possible quartets on $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ :
ab|cd ac|bd ad|bc

## Quartet in a tree

A tree T contains $\mathbf{a b | c d}$ if ab|cd is a subtree of T (in the minor sense, with labels preservation).
Equivalently, the a-b path does not intersect the c-d path (no shared vertex).


## Quartet in a tree

A tree T contains $\mathbf{a b | c d}$ if ab|cd is a subtree of T (in the minor sense, with labels preservation).
Equivalently, the a-b path does not intersect the c-d path (no shared vertex).


## Quartet in a tree

A tree T contains $\mathbf{a b | c d}$ if ab|cd is a subtree of T (in the minor sense, with labels preservation).
Equivalently, the a-b path does not intersect the c-d path (no shared vertex).


## Quartet consistency

Given: a set of quartets Q.
Task: find a tree T that contains every quartet in Q .


NP-hard [Steel, 1992]

## Quartet consistency

Given: a set of quartets Q.
Task: find a tree T that contains a maximum number of quartet from Q .


NP-hard [Steel, 1992]
Max SNP-hard

## Where do these quartets come from?



## Where do these quartets come from?

Infer many gene trees (assumed to be binary).
The species tree should be a «consensus» of these trees
$\Rightarrow$ Replace the genes by the species that contains them.


## Where do these quartets come from?

Infer many gene trees (assumed to be binary).
The species tree should be a «consensus» of these trees
$\Rightarrow$ Replace the genes by the species that contains them.

$\{1,2,3,4,5\}$ is the set of species
We assume every tree is now on leafset $\{1,2,3,4,5\}$
Now, combine these trees into a consensus.

## Where do these quartets come from?

List each of the $\binom{n}{4}$ quartets contained in each tree
$\Rightarrow$ Multiset of quartets Q
Goal: find a tree that contains a maximum number of quartets of $\mathbf{Q}$ (in the multiset sense).


12|34
12|35
12|45
23|45

13|42
13|45
13|25
$34 \mid 25$


13|24
13|25
13|45
32|45

## Where do these quartets come from?

List each of the $\binom{n}{4}$ quartets contained in each tree
$\Rightarrow$ Multiset of quartets Q
Goal: find a tree that contains a maximum number of quartets of $\mathbf{Q}$ (in the multiset sense).


## Where do these quartets come from?

List each of the $\binom{n}{4}$ quartets contained in each tree
$\Rightarrow$ Multiset of quartets Q
Goal: find a tree that contains a maximum number of quartets of $\mathbf{Q}$ (in the multiset sense).


## Weighted quartet consensus (WQC)

Given: a set of trees $\mathrm{T}_{1}, \ldots \mathrm{~T}_{\mathrm{k}}$ on the same leafset.
Goal: find a tree that contains a maximum number of quartets from quartets $\left(\mathrm{T}_{1}\right) \biguplus \ldots$ quartets $\left(\mathrm{T}_{\mathrm{k}}\right) \quad \biguplus$ denotes multiset union

## Weighted quartet consensus (WQC)

Given: a set of trees $T_{1}, \ldots T_{k}$ on the same leafset.
Goal: find a tree that contains a maximum number of quartets from quartets $\left(T_{1}\right) \biguplus \ldots$ quartets $\left(T_{k}\right) \quad \biguplus$ denotes multiset union

Why the name "weighted quartet consensus"?
Each quartet can be given a weight in [0..1] based on its frequency in the input trees.
e.g.
ab|cd 0.24
ac|bd 0.47
ad|bc 0.29
We want to find a tree that maximizes the sum of the weights of its quartets.

## Some history

If input quartets $Q$ can be anything

- NP-hard to find a tree with all quartets, Max SNP-hard to maximize [Steel, 1992]
- Many heuristics [Strimmet \& von Haeseler, 1996, Berry et al., 1999, ...]


## Some history

If input quartets $Q$ can be anything

- NP-hard to find a tree with all quartets, Max SNP-hard to maximize [Steel, 1992]
- Many heuristics [Strimmet \& von Haeseler, 1996, Berry et al., 1999, ...]

If input quartets $\mathbf{Q}$ are dense

- Meaning, Q has exactly one quartet for each 4 labels
- Easy to check if some tree contains all of Q
- NP-hard to maximize the number of quartets of $Q$ in a tree [Jiang \& al., 2001]
- Polynomial-time approximation scheme (PTAS) [Jiang \& al., 2001]
- FPT in time $O\left(4^{k} n+n^{4}\right)$ [Gramm \& Niedermeier, 2001], improved in [Chang, 2008]


## Some history

If input quartets $Q$ can be anything

- NP-hard to find a tree with all quartets, Max SNP-hard to maximize [Steel, 1992]
- Many heuristics [Strimmet \& von Haeseler, 1996, Berry et al., 1999, ...]

If input quartets $\mathbf{Q}$ are dense

- Meaning, $Q$ has exactly one quartet for each 4 labels
- Easy to check if some tree contains all of Q
- NP-hard to maximize the number of quartets of $Q$ in a tree [Jiang \& al., 2001]
- Polynomial-time approximation scheme (PTAS) [Jiang \& al., 2001]
- FPT in time $O\left(4^{k} n+n^{4}\right)$ [Gramm \& Niedermeier, 2001], improved in [Chang, 2008]

If input quartets $\mathbf{Q}$ come from trees on the same set of leaf labels (our setting)

- Minimization version of WQC: minimize number of quartets to discard from the multiset to have a tree containing all remaining quartets [Bansa \& al., 2011]
- Conjectured that WQC is NP-hard
- 2-approximation: return the best input tree
- ASTRAL heuristic [Mirarab \& al., 2014] (actually also a 2-approx.)
- Conjectured that WQC is NP-hard


## In this work

- We resolve this conjecture by proving that WQC is NP-hard.
- We devise a $1 / 2$-approximation algorithm


## NP-hardness (idea)

## Cyclic ordering problem

Given: a set $S$ of $n$ elements and a set $C$ of ordered triples ( $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ) of elements of S Task: does there exist a linear ordering of $S$ such that for each $(a, b, c) \in C$, we have either $\boldsymbol{a}<\boldsymbol{b}<\boldsymbol{c}$ or $\mathbf{b}<\boldsymbol{c}<\boldsymbol{a}$ or $\boldsymbol{c}<\boldsymbol{b}<\boldsymbol{a}$ ?

In other words, can the elements of $S$ be arranged in a circle and contain every triple of C when read clockwise?

## NP-hardness (idea)

## Cyclic ordering problem

Given: a set $S$ of $n$ elements and a set $C$ of ordered triples ( $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ) of elements of S Task: does there exist a linear ordering of $S$ such that for each $(a, b, c) \in C$, we have either $\boldsymbol{a}<\boldsymbol{b}<\boldsymbol{c}$ or $\mathbf{b}<\boldsymbol{c}<\boldsymbol{a}$ or $\boldsymbol{c}<\boldsymbol{b}<\boldsymbol{a}$ ?

In other words, can the elements of $S$ be arranged in a circle and contain every triple of C when read clockwise?
e.g.
(a, b, c)
(d, a, b)
(e, b, c)
(c, a, b)

## a

e
b
C
d

## NP-hardness (idea)

## Cyclic ordering problem

Given: a set $S$ of $n$ elements and a set $C$ of ordered triples ( $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ) of elements of $S$ Task: does there exist a linear ordering of $S$ such that for each $(a, b, c) \in C$, we have either $\boldsymbol{a}<\boldsymbol{b}<\boldsymbol{c}$ or $\mathbf{b}<\boldsymbol{c}<\boldsymbol{a}$ or $\boldsymbol{c}<\boldsymbol{b}<\boldsymbol{a}$ ?

In other words, can the elements of S be arranged in a circle and contain every triple of C when read clockwise?

NP-hard [Galil \& Megiddo, 1977]

## NP-hardness (idea)

## Reduction: main gadget = W-Z trees



Every tree is on leafset $\mathrm{W}+\mathrm{Z}+\mathrm{S}$, where $\mathbf{W}$ and $\mathbf{Z}$ are huge (e.g. $\mathrm{n}^{100}$ leaves) and $\mathrm{S}=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right\}$

Each input tree has the s's linearly ordered.
Idea ${ }_{1}$ : the solution will also have such a linear order, corresponding to the cyclic ordering instance.

Idea ${ }_{2}$ : only the quartets of the form $\mathrm{ws}_{\mathrm{i}} \mid \mathrm{S}_{\mathrm{k}} \mathrm{z}$ matter

## NP-hardness (idea)

Reduction: main gadget $=\mathrm{W}-\mathrm{Z}$ trees


Idea $_{3}$ : for each triple $(a, b, c) \in C$, make some $W$ - $Z$ trees that will enforce an optimal tree to order $\mathrm{a}<\mathrm{b}<\mathrm{c}$ or $\mathrm{b}<\mathrm{c}<\mathrm{a}$ or $\mathrm{c}<\mathrm{b}<\mathrm{a}$ in the 'middle'.

## NP-hardness (idea)

$(a, b, c) \in C=>6$ input trees


## NP-hardness (idea)

$(a, b, c) \in C=>6$ input trees


In the first pair of trees, wa|bz appears in both trees.
For every other pair $\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{k}}$, both $\mathbf{w} \mathbf{s}_{\mathrm{i}} \mid \mathrm{s}_{\mathrm{k}} \mathbf{z}$ and $\mathbf{w s}_{\mathrm{k}} \mid \mathrm{s}_{\mathrm{i}} \mathbf{z}$ appear.
So this tree pair makes wa|bz, and only wa|bz, important.

## NP-hardness (idea)

$(a, b, c) \in C=>6$ input trees


## NP-hardness (idea)

$(a, b, c) \in C=>6$ input trees

## wa|bz important

wb|cz important wc|az important

Ideally, our optimal solution T would contain all important quartets.
This is never possible.
Can we settle for a tree that contains 2 of these important quartets?
Possible if and only $\mathrm{a}<\mathrm{b}<\mathrm{c}, \mathrm{b}<\mathrm{c}<\mathrm{a}$ or $\mathrm{c}<\mathrm{a}<\mathrm{b}$


Contains wb|cz and wc|az
Contains only wc|az

## NP-hardness (idea)

For each triple $(a, b, c) \in C$, make 6 input $W$ - $Z$ trees that will make either $\mathbf{a}<\mathbf{b}<\mathbf{c}$ or $\mathbf{b}<\mathbf{c}<\mathbf{a}$ or $\mathbf{c}<\boldsymbol{b}<\mathbf{a}$ good in a solution.

There exists a linear ordering of $S$ satisfying every $(a, b, c) \in C$ if and only if
there exists a tree containing all the good orderings
(i.e. containing 2 of the 3 important quartets defined by each set of 6 trees).

## Approximation algorithm

Minimization version of WQC:
Weighted Minimum Quartet Inconsistency (WMQI)
Given: a set of trees $T_{1}, \ldots T_{k}$ on the same leafset.
Goal: find a tree $T$ that minimizes the number of quartets of
quartets $\left(T_{1}\right) \biguplus \ldots \biguplus$ quartets $\left(T_{k}\right)$
that are not in T (multiple occurrences are counted multiple times).

## Approximation algorithm

Minimization version of WQC:
Weighted Minimum Quartet Inconsistency (WMQI)
Given: a set of trees $T_{1}, \ldots T_{k}$ on the same leafset.
Goal: find a tree $T$ that minimizes the number of quartets of
quartets $\left(\mathrm{T}_{1}\right) \biguplus \ldots$... quartets $\left(\mathrm{T}_{\mathrm{k}}\right)$
that are not in T (multiple occurrences are counted multiple times).

Factor 2 approximation:
Return $\mathrm{T}_{\mathrm{i}}$ that minimizes the number of quartets not in the input.

## Approximation algorithm

Min-version WMQI has a 2-approximation (rejects, at worst, twice too many quartets)

Max-Version WQC has a Randomized 1/3-approximation: generate a random tree.

- Each input quartet has a $1 / 3$ chance of being in the tree.
- More than just a $1 / 3$-approx. : the random tree contains $1 / 3$ of the input quartets (on expectation).

Lemma: for WQC, this is a $1 / 2$-approximation algorithm:
Return the best of the WMQI 2-approx. or the WQC 1/3-approx.
Proof idea: if the WQC solution preserves $2 / 3$ or less of the input quartets, the tree that contains $1 / 3$ of the input quartets is a $1 / 2$-approx.
If the WQC solution preserves more than $2 / 3$ of the input quartets, the WMQI 2-approx. rejects few quartets, and so preserves many: at least $1 / 2$ as many as the optimal solution (details => paper).

## Approximation algorithm

Annoying problem: the $1 / 3$-approximation is a randomized algorithm - it only preserves $1 / 3$ of the input quartets on expectation.

We derandomize this algorithm, using the method of conditional expectation.

## Derandomization

Assume the output tree is rooted (not a technical problem).
Start with a completely unresolved tree.
If we resolve (i.e. binarize) randomly, each quartet appears with 1/3 probability.
$12 \mid 34$
$12 \mid 35$
$12 \mid 45$
$23 \mid 45$
$13 \mid 42$
$13 \mid 45$
$13 \mid 25$
$34 \mid 25$
$13 \mid 24$
$13 \mid 25$
$13 \mid 45$
$32 \mid 45$


## Derandomization

Let us consider the first split of a solution.
Idea: we will look for a split that preserves $1 / 3$ quartets, on expectation (we know such a split exists).

12|34
12|35
12|45
23|45
13|42
13|45
$13 \mid 25$
34|25
13|24
$13 \mid 25$
13|45
32|45


## Derandomization

## Let us consider the first split of a solution.

Idea: we will look for a split that preserves $1 / 3$ quartets, on expectation (we know such a split exists).
Let's put 1 on the left (this choice is arbitrary).

12|34
12|35
12|45
23|45
13|42
13|45
13|25
34|25
13|24
13|25
13|45
32|45


## Derandomization

## Let us consider the first split of a solution.

Idea: we will look for a split that preserves $1 / 3$ quartets, on expectation (we know such a split exists).
Let's put 1 on the left (this choice is arbitrary).
Now where should 2 go? Try both!
12|34
12|35
12|45
23|45
13|42
13|45
13|25
34|25
13|24
$13 \mid 25$
13|45
32|45


## Derandomization

For each of the 2 options, view $\{3,4,5\}$ as randomly placed into either split with probability 1 ².
Then we randomly resolve each "random split", yielding a probability on every input quartet.


## Derandomization

For example, in this scenario,
$\operatorname{Pr}[$ T contains 12|34 ] = Pr[3,4 go left AND left split resolves into 12|34] +
$\operatorname{Pr}[3$ goes left, 4 goes right AND left split resolves into 12|3] +
$\operatorname{Pr}[3$ goes right, 4 goes left AND left split resolves into 12|4] + $\operatorname{Pr[3,4~go~right]~}$


## Derandomization

For example, in this scenario,
$\operatorname{Pr}[$ T contains 12|34 ] = Pr[3,4 go left AND left split resolves into 12|34] +
$\operatorname{Pr}[3$ goes left, 4 goes right AND left split resolves into 12|3] +
Pr[3 goes right, 4 goes left AND left split resolves into 12|4] +
$\operatorname{Pr}[3,4$ go right]

$$
=1 / 4 * 1 / 3+1 / 4 * 1 / 3+1 / 4 * 1 / 3+1 / 4=1 / 2
$$

12|34
12|35
12|45
23|45
$13 \mid 42$
13|45
13|25
34|25
13|24
13|25
13|45
32|45


## Derandomization

For each scenario, compute $\sum_{q \in Q} \operatorname{Pr}[T$ contains $q]$, and keep the scenario with maximum value.
One of these two "partial splits" will contain at least $1 / 3$ of the input quartets, on expectation.


## Derandomization

For each scenario, compute $\sum_{q \in Q} \operatorname{Pr}[T$ contains $q]$, and keep the scenario with maximum value.
One of these two "partial splits" will contain at least $1 / 3$ of the input quartets, on expectation.
Once a choice is made, proceed with the next label.


## Derandomization

For each scenario, compute $\sum_{q \in Q} \operatorname{Pr}[T$ contains $q]$, and keep the scenario with maximum value.
One of these two "partial splits" will contain at least $1 / 3$ of the input quartets, on expectation.
Once a choice is made, proceed with the next label.


## Derandomization

Once a split is complete, repeat recursively on the two splits.


## Derandomization

At each decision we make in this algorithm, we maintain a conditional expectation of at least $1 / 3$
$\Rightarrow$ When we finish with a binary tree, it contains $1 / 3$ quartets from the input.

Takes time $O\left(k^{2} n^{2}+k n^{4}+n^{5}\right)$
( n is the number of leaves, k is the number of input trees)

## Conclusion

Are there better approximation algorithms (with a ratio above $1 / 2$ ) ?
Is the WQC problem Max SNP-Hard?
What is the approximation ratio of the ASTRAL algorithm? (see paper)
Fixed parameter tractability of WQC?
Any way to obtain an exact solution in reasonable time?

- Not too hard that the problem is FPT w.r.t. parameter
$q=\#$ of quartets to discard from the input multiset
- Take time $\mathrm{O}^{*}\left(4^{\mathrm{q}}\right)$, which is not reasonable.

