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The plan

In this talk I…

 …come up with supertree problems

 Finding a supergenetree that minimizes duplications

 …convince you that they’re hard

 …try to do something about it

 Exact, brute-force algorithm

 A greedy heuristic
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The Supergenetree problem
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S

Species tree

 Gene tree label = species

 Multiple copies (paralogs)

 e.g. a1, a2, a3

 Gene trees may be partial +  

discordant with S (e.g. G3)a1
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 Our goal : find a gene tree

that displays them all

a2 a3 d1c1a1 c2 e1 b1



SuperGeneTree

 Our trees are said compatible if there is a 

supertree displaying them all

 Finding a supertree (or determining

incompatibility) is an old problem

 The BUILD algorithm does that (Aho & al., 1981)

 What’s different about supergenetrees ?



SuperGeneTree

 Our trees are said compatible if there is a 

supertree displaying them all

 Finding a supertree (or determining

incompatibility) is an old problem

 The BUILD algorithm does that (Aho & al., 1981)

 What’s different about supergenetrees ?

 We have the species tree



SuperGeneTree

 Often, many supergenetrees exist

 Which one is the best ?

 We explore ways to choose using
information from the species tree S

 More specifically, we explore ways to use 
reconciliation with S to pick the best 
supergenetree
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SuperGeneTree Problem 1

 Given: a set of compatible gene trees

G = {G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

 NP-Complete

 NP-Hard to approximate within a n1-ε factor



Independent speciation trees

G1

G2

…
No two trees share a 

common gene + all trees
of orthologous groups
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Independent speciation trees
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a3 d3 c3

G4

Speciation trees = all 
speciation (all agree with

S)
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Extending the BUILD algorithm

 Given a set of trees G, the BUILD algorithm
outputs, if it exists, a supertree T displaying
every tree of G

 T might be partially resolved (non-binary)

 Every binary resolution of T displays G

 BUILD can be extended to output every
supertree displaying G + every minimally 
resolved (Constantinescu & Sankoff, 1995, Ng 
& Wormald, 1996, Semple, 2003)



Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet 

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2



Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet 

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components = 

possible splits at the root



Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet 

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components = 

possible splits at the root

a1 b1 c1

a2 c2



Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet 

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components = 

possible splits at the root

a1 b1 c1

a2 c2
a1 b1 c1

a2

c2



Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet 

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components = 

possible splits at the root

a1 b1 c1

a2 c2
a1 b1 c1

a2

c2

…



Extending the BUILD algorithm

 For every partially unresolved tree T obtained
in this fashion :

 Find a resolution that minimizes the number of 
duplications (linear time, Lafond & al. 2012)

 In the worst case, there are Ω(nn/2) trees to 
resolve (Jansson, Lemence, Lingas, 2012).

 Total time : Ω(n * nn/2)

 Worst case in practice : ? 



Extending the BUILD algorithm

 Trying every partition of the components can

take some time.

 Instead, let’s find a way to choose a partition 

that "looks good".
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c1 e1 f1a1 d1 c1 d1 b1 e1
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S
G1 G2 G3

We already know that some duplications will

be required.

Focus on the "highest" ones, i.e. those that

occur before the first speciation in S.

We call those duplication Pre Speciation

Duplications (PreSpecDups).

New subproblem : minimize only these

PreSpecDups
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That’s a Max-Cut !!
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Extending the BUILD algorithm

To minimize the number of PreSpecDups : 

 Make the BUILD graph

 Add the PreSpecDup edges

 Find a Max-Cut partition of the components 

 Repeat recursively on the parts

That’s NP-Hard !  And we have 

to repeat it recursively !!

The result : even this problem

is hard to approximate !



Conclusion

 Fixed Parameter Tractability ?

 Criteria other than duplications ?

 e.g. gene losses

 What to do if the input gene trees are 

incompatible ?
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