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The plan

In this talk I...

...come up with supertree problems
Finding a supergenetree that minimizes duplications

...convince you that they're hard

...try to do something about it
Exact, brute-force algorithm
A greedy heuristic
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TP53 gene tree(s)
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Clusters of orthologous groups
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Clusters of orthologous groups
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The Supergenetree problem
_

Multiple gene trees Species tree
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o Gene tree label = species
o Multiple copies (paralogs)
o e.g.a, a,, a;

o Gene trees may be partial +
b, e a & discordant with S (e.g. Gy)
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The Supergenetree problem
_

Multiple gene trees o Our goal : find a gene tree
that displays them all
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SuperGeneTree

Our trees are said compatible if there is a
supertree displaying them all

Finding a supertree (or determining
iIncompatibllity) is an old problem

The BUILD algorithm does that (Aho & al., 1981)

What's different about supergenetrees ?



SuperGeneTree

Our trees are said compatible if there is a
supertree displaying them all

Finding a supertree (or determining
iIncompatibllity) is an old problem

The BUILD algorithm does that (Aho & al., 1981)
What's different about supergenetrees ?

We have the species tree



SuperGeneTree
_

o Often, many supergenetrees exist
7 Which one Is the best ?

1 We explore ways to choose using
Information from the species tree S

- More specifically, we explore ways to use
reconciliation with S to pick the best
supergenetree



Reconciliation
]

Reconciliation identifies duplication, speciation
and loss events in G.
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Reconciliation identifies duplication, speciation
and loss events in G.
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Reconciliation
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Reconciliation identifies duplication, speciation
and loss events in G.

Apparent
G PP S
Non-apparent
Cy d, C, a b C d

a, b,
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Reconciliation identifies duplication, speciation
and loss events in G.
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and loss events in G.

a b C d

Possible reconciliation costs : #dups, #dups + #losses
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The Supergenetree problem
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The Supergenetree problem
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The Supergenetree problem
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The Supergenetree problem
_
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The plan

In this talk I...

o ...come up with supertree problems
o Finding a supergenetree that minimizes duplications

O ...convince you that they're hard

o ...try to do something about it
o Exact, brute-force algorithm
o A greedy heuristic
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0 Glven: a set of compatible gene trees
G={G, ..., G} and a species tree S
o Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)
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Given: a set of compatible gene trees
G={G, ..., G} and a species tree S

Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)

NP-Complete



SuperGeneTree Problem 1

Given: a set of compatible gene trees
G={G, ..., G} and a species tree S

Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)

NP-Complete
NP-Hard to approximate within a n'-¢ factor
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Independent speciation trees
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Independent speciation trees
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Independent speciation trees
_

a b C d

Independent = each
gene appears only once




Independent speciation trees
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Independent speciation trees
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Speciation trees = all
speciation (all agree with

S)




SuperGeneTree Problem 2
_

0 Gilven: a set of independent speciation gene
trees G = {G,, ..., G} and a species tree S
o Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)



SuperGeneTree Problem 2
_

0 Gilven: a set of independent speciation gene
trees G = {G,, ..., G} and a species tree S

0 Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)

1 NP-Complete



The plan

In this talk I...

O ...come up with supertree problems
o Finding a supergenetree that minimizes duplications

o ...convince you that they’re hard

o ...try to do something about it
o Exact, brute-force algorithm
o A greedy heuristic



What I1s so hard about it ?
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We will find a vertex-coloring of our graph
(a partition into independent sets)




What I1s so hard about it ?

1
) ) \ AN
. ° Xq Wy a W, 7, b,
G3 G4
v, v, A A
X5 Y1 Cq Yo Z; d,

G, Gjshare a gene from the same species (i.e. a label) iff v;, v; share an edge
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G;, G; can be merged into a supertree without duplications iff v;, v; share no edge
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A best solution partitions the trees into k sets of trees that all share no "label"
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A best solution partitions the trees into k sets of trees that all share no "label”
Makes one zero-duplication tree for each part.
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Makes one zero-duplication tree for each part.
Connects these k subtrees with at most k — 1 duplications.
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Independent sets, i.e. a vertex-coloring !

A best solution partitions the trees i@f trees that all share no "label" >

Makes one zero-duplication tree for each part.
Connects these k subtrees with at most k — 1 duplications.
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Makes one zero-duplication tree for each part.
Connects these k subtrees with at most k — 1 duplications.




The plan

In this talk I...

O ...come up with supertree problems
o Finding a supergenetree that minimizes duplications

O ...convince you that they're hard

o ...try to do something about it
o Exact, brute-force algorithm
o A greedy heuristic



Extending the BUILD algorithm

o Given a set of trees G, the BUILD algorithm
outputs, If it exists, a supertree T displaying
every tree of G

T might be partially resolved (non-binary)

Every binary resolution of T displays G

- BUILD can be extended to output every
supertree displaying G + every minimally
resolved (Constantinescu & Sankoff, 1995, Ng
& Wormald, 1996, Semple, 2003)



Extending the BUILD algorithm

BUILD graph
vertices = genes
edges = genes together in some triplet

a; by Cy b, C,
GZ/\ a, C,
a; by C,
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\ Partition of connected components =
possible splits at the root
a; by Co
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Extending the BUILD algorithm

BUILD graph
vertices = genes
edges = genes together in some triplet

Partition of connected components =
possible splits at the root

AN s




Extending the BUILD algorithm

For every partially unresolved tree T obtained
In this fashion :

Find a resolution that minimizes the number of
duplications (linear time, Lafond & al. 2012)

In the worst case, there are Q(n"?) trees to
resolve (Jansson, Lemence, Lingas, 2012).

Total time : Q(n * n"?)

Worst case In practice : ?



Extending the BUILD algorithm

o Trying every partition of the components can
take some time.

o Instead, let’s find a way to choose a partition
that "looks good".



A greedy approach
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be required.
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occur before the first speciation in S.
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We already know that some duplications will
be required.

Focus on the "highest" ones, i.e. those that
occur before the first speciation in S.

We call those duplication Pre Speciation
Duplications (PreSpecDups).



A greedy approach

m N AN, AN,

a, d; ¢, d; b; e

We already know that some duplications will
be required.

Focus on the "highest" ones, i.e. those that
occur before the first speciation in S.

We call those duplication Pre Speciation
Duplications (PreSpecDups).

New subproblem : minimize only these
PreSpecDups




A greedy approach
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- Make the BUILD graph and
Identify the components.
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- Make the BUILD graph and
Identify the components.

- Add a special edge between
components that requires a
PreSpecDup when split.

©




A greedy approach
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- Make the BUILD graph and
Identify the components.

- Add a special edge between
components that requires a
PreSpecDup when split.
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A greedy approach

m N AN, AN,

a, d; ¢, d; b; e

- Make the BUILD graph and
Identify the components.

- Add a special edge between
components that requires a
PreSpecDup when split.

- Find the partition that merges a
maximum of duplications.

©




A greedy approach
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A greedy approach
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A greedy approach
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That’s a Max-Cut !!




Extending the BUILD algorithm

To minimize the number of PreSpecDups :
Make the BUILD graph
Add the PreSpecDup edges
Find a Max-Cut partition of the components
Repeat recursively on the parts
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- Repeat recursv%bkon the parts

That’s NP-Hard ! And we have
to repeat it recursively !




Extending the BUILD algorithm

To minimize the number of PreSpecDups :
- Make the BUILD graph

- Add the PreSpecDup edges
o Find a Max-Cut partition of the components
- Repeat recursv%Bkon the parts

That’s NP-Hard ! And we have
to repeat it recursively !!

The result : even this problem
IS hard to approximate !




Conclusion

Fixed Parameter Tractability ?

Criteria other than duplications ?
e.g. gene losses

What to do if the input gene trees are
iIncompatible ?
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