RECONSTRUCTING A
SUPERGENETREE MINIMIZING
RECONCILIATION

Manuel Lafond! Aida Ouangraoua® Nadia El-Mabrouk?



The plan

In this talk I...

...come up with supertree problems
Finding a supergenetree that minimizes duplications

...convince you that they're hard

...try to do something about it
Exact, brute-force algorithm
A greedy heuristic



TP

PhylomeDB

TP73
TRP73
TP73
. TP73
TRP73
TPB3
" st TPB3
TPB3
_EB{DNF’EBJ‘%
TPB&3
TP53
TP53
TP53
TRP&3

s F1M2U8
lJOTP 53

gene tree(s)

Ensembl

tp5 3, Amazon molly
TPS3, Platyfish
tp53, Medaka

53, Fugu
tpE 3, Tetraodon
tp5 3, Stickleback
tpE3, Tilapia

1p53, Cod

TPS3 (1 of 2), Cave fish
tp5 3, Zebrafish

tp5 3, Cawve fish

L— tp5 3, Spotted gar

1.WUELHAHE

RCHICK21_PES4#
mPOEGU21_3_PE21#
ERIEUGS_889_PEL1#
OTOGA112841_PE1#
PTEVAGS_404_PE1#
PROCAGS_780_PE1#
00 tal DXAF26_20_PES#
HACHU1_7_PE15%
GORGO1_4_PE11#
wH51_PE355#
PANTR1_4_PE11%

0.7

. B

N 2 CALJA7_41_PE25#
: i' RATS_PE2047#
. 7H{H§ RHOUSE4_PE3575#
DIPORGS_4520_PE1%
CAYPO25_29_PE7 #

TURTRGS_1663_PE7#

=1

]

PIGE_45_PE13#%
HORSEZ2_48_FES#
FELCAGS_3119_PE3#

coT—mEllne COMED

HOGENOM peas

TIONMOO =T T T C LW

82 '3?THHCEUGS_1345_PE1#

TreeFam

B #53, Fruit fly

B 53, Zebrafish

| & Ps3, Human
_E . TRPE3, House mouse
.TPSS, Norway rat

W 3, cnidken

B P73, Zebrafish

N 1773, Chicken
= |} P73, Human

1 ‘ TRP73, House mouse
_: P 7773, Norway rot

B TP53, Zebrafich

_C: P 153, Norvay rat
P /A, Norway ot

. TRPS3, House mouse
{41 TPS3, Human




TP53 gene tree(s)
-*

Phylomé A
y Ensembl + PhylomeDB + TreeFam + HOGENOM + ...
TP73
TP73
TP73
4|l TP73
TP73
TPE
" n..-.s_s.FTPE eeFam
TPA? e 53, Fruit fly
2 DNP! —a B> TPS3, Zebrafish
{TF’B e |} 7Ps3, Human
.TRPS:!, House mouss
TP 53 _: 'TPGB, Norway rat
TP53 e W TPs3, chicken
B 1973, Zebrafish
TPE _E: .TP73, Chicken
TR ———a mTWB, Human
_ B P73, House mouse
'T}. _C: .TP73, Norway rat
e B TPS3, Zebrafish
P 153, Norvay rat
_C: P 174, Norway ot
e .TRPSB, House mouse
P, s | 24 TPS3, Human
) // /
gt &y 4 L i 3

HOGENOM peas

uuuuuuuuuuuuuuuuuu




TP53 gene tree(s)

_
Ensembl
Phyl A
YIOMY | Ensembl + PhylomeDB + TreeFam + HOGENOM + ...
TP73

TP73
TP73
" TP73
TP73

SUPERGENETREE !

%%//%%

eeFam

e ' P53, Fruit fly
—a B> TPS3, Zebrafish
—a mms, Human

. TRPE3, House mouse
_C: .'rps3, Norway rat
e W TPs3, chicken

B 1973, Zebrafish
_C: -TP73, Chicken
s | 84 TP73, Human

B P73, House mouse
_: P 73, Norway rat
e B TPS3, Zebrafish

P 153, Norvay rat
_C: P 174, Norway ot
- . TRPS3, House mouss
S wTPSB, Human

HOGENOM peas

uuuuuuuuuuuuuuuuuu

82




Clusters of orthologous groups




Clusters of orthologous groups

7 IR o
",":-::; " \‘
‘il AN
N\ m.},‘sg.s\




Clusters of orthologous groups
_

4

T |
Al NN
N

b
N




Clusters of orthologous groups

G,
T
G,
HE EH B

o : \\; 4



Clusters of orthologous groups

N G %\

SUPERGENETREE ! >)\

'f‘?"‘f ﬁ\\
e 8
e R

2 = ‘ ‘A 0
oy 4
o
% %
8 o8 %
o
o oo




The Supergenetree problem
_

Multiple gene trees Species tree

@
/>

a, b, ¢, d;

a b C d e

o Gene tree label = species
o Multiple copies (paralogs)
o e.g.a, a,, a;

o Gene trees may be partial +
b, e a & discordant with S (e.g. Gy)

S A%



The Supergenetree problem
_

Multiple gene trees o Our goal : find a gene tree
that displays them all

@
/>

a, b, ¢, d;

S A%

b, e a a



The Supergenetree problem

Multiple gene trees

@
/>

a, b, ¢, d;

S A%

b, e a a

o Our goal : find a gene tree
that displays them all



The Supergenetree problem

Multiple gene trees

Gl/»\
a, by dl\

o Our goal : find a gene tree
that displays them all



The Supergenetree problem

Multiple gene trees

AN

al bl Cl dl

AN
AN

e, a; a,

o Our goal : find a gene tree
that displays them all



The Supergenetree problem

Multiple gene trees

AN

al bl Cl dl

o Our goal : find a gene tree
that displays them all

O AN

az Cg



SuperGeneTree

Our trees are said compatible if there is a
supertree displaying them all

Finding a supertree (or determining
iIncompatibllity) is an old problem

The BUILD algorithm does that (Aho & al., 1981)

What's different about supergenetrees ?



SuperGeneTree

Our trees are said compatible if there is a
supertree displaying them all

Finding a supertree (or determining
iIncompatibllity) is an old problem

The BUILD algorithm does that (Aho & al., 1981)
What's different about supergenetrees ?

We have the species tree



SuperGeneTree
_

o Often, many supergenetrees exist
7 Which one Is the best ?

1 We explore ways to choose using
Information from the species tree S

- More specifically, we explore ways to use
reconciliation with S to pick the best
supergenetree



Reconciliation
]

Reconciliation identifies duplication, speciation
and loss events in G.



Reconciliation
I e

Reconciliation identifies duplication, speciation
and loss events in G.

G S
Duplication
Speciation
a, b, (o} d, C, a b C d



Reconciliation
I e

Reconciliation identifies duplication, speciation
and loss events in G.

Apparent
G PP S
Non-apparent
Cy d, C, a b C d

a, b,



Reconciliation
I e

Reconciliation identifies duplication, speciation
and loss events in G.




Reconciliation
]

Reconciliation identifies duplication, speciation
and loss events in G.

a b C d

Possible reconciliation costs : #dups, #dups + #losses



Reconciliation
]

Reconciliation identifies duplication, speciation
and loss events in G.

a b C d

Possible reconciliation costs : #dups, #dups + #losses



The Supergenetree problem
_

@
/>

a, b, ¢, d;

S A%

b, e a a



The Supergenetree problem
_

@
/>

a, byc, d; \

S A%

a, b, €, a, az C; C, d,
b, e a a



The Supergenetree problem

Gl/»\

a, a; C; d;
A WHICH IS BETTER 2?27
\ <
A a; b, €4 a a3 C C, d;

b, €




The Supergenetree problem

Gl/»\

a, az C d
A Count the duplications !
\ <
A a b, & a, a3 C; C, d;

b, €




The Supergenetree problem
S

a, b, €, a, az C; C, d,



The Supergenetree problem
S

S m
A a, c, & b a a ¢ d
a b C d e

a, b, €, a, az C; C, d,



The Supergenetree problem
_

a 2 1 a, as; C d,

S BETTER

a, b, €, a, az C; C, d,



The plan

In this talk I...

o ...come up with supertree problems
o Finding a supergenetree that minimizes duplications

O ...convince you that they're hard

o ...try to do something about it
o Exact, brute-force algorithm
o A greedy heuristic



SuperGeneTree Problem 1
_

0 Glven: a set of compatible gene trees
G={G, ..., G} and a species tree S
o Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)



SuperGeneTree Problem 1

Given: a set of compatible gene trees
G={G, ..., G} and a species tree S

Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)

NP-Complete



SuperGeneTree Problem 1

Given: a set of compatible gene trees
G={G, ..., G} and a species tree S

Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)

NP-Complete
NP-Hard to approximate within a n'-¢ factor



Independent speciation trees

>
o)

v /o8
(7

'/s > ;‘ "

No two trees share a
common gene + all trees
of orthologous groups




Independent speciation trees

G,
A
by C1
2
N\
2 G d,

a
GA
a



Independent speciation trees

AN
AN

G
a
a
G
a

1
1 b, Cq
2
2 Co d,

/\

1 Cs d,



Independent speciation trees
_

a b C d

Independent = each
gene appears only once




Independent speciation trees

AN
AN

G
a
a
G
a

1
1 b, Cq
2
2 Co d,

/\

3 d; Cs



Independent speciation trees

G,
\A
a, b, C,
AN\
\
a, G, d,

a b C d

Speciation trees = all
speciation (all agree with

S)




SuperGeneTree Problem 2
_

0 Gilven: a set of independent speciation gene
trees G = {G,, ..., G} and a species tree S
o Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)



SuperGeneTree Problem 2
_

0 Gilven: a set of independent speciation gene
trees G = {G,, ..., G} and a species tree S

0 Find: a SuperGeneTree G* that
displays every tree of G
minimizes #dups(G*, S)

1 NP-Complete



The plan

In this talk I...

O ...come up with supertree problems
o Finding a supergenetree that minimizes duplications

o ...convince you that they’re hard

o ...try to do something about it
o Exact, brute-force algorithm
o A greedy heuristic



What I1s so hard about it ?

1
) ) \ AN
. ° Xq Wy a W, 7, b,
G3 G4
v, ., A A
X5 Y1 Cq Yo Z; d,

We will find a vertex-coloring of our graph
(a partition into independent sets)




What I1s so hard about it ?

1
) ) \ AN
. ° Xq Wy a W, 7, b,
G3 G4
v, v, A A
X5 Y1 Cq Yo Z; d,

G, Gjshare a gene from the same species (i.e. a label) iff v;, v; share an edge
e

G;, G; can be merged into a supertree without duplications iff v;, v; share no edge



What I1s so hard about it ?

-
" 2 X1 Wy a; W, ﬁ 1 b,

Xo Y1 Cq Y Z, d,

G, Gjshare a gene from the same species (i.e. a label) iff v;, v; share an edge
e

G;, G; can be merged into a supertree without duplications iff v;, v; share no edge



What I1s so hard about it ?

GZ/\
vV, Vs \
W, 7 b,
Vj v,

A best solution partitions the trees into k sets of trees that all share no "label"



What I1s so hard about it ?

T
Vi \7.
G, +G, G, + G,
Vs v, (O dups) (0 dups)

A best solution partitions the trees into k sets of trees that all share no "label”
Makes one zero-duplication tree for each part.



What I1s so hard about it ?

A best solution partitions the trees into k sets of trees that all share no "label"
Makes one zero-duplication tree for each part.
Connects these k subtrees with at most k — 1 duplications.



What I1s so hard about it ?
1

G, + G;

This is a partition of the vertices of our graph into
Independent sets, i.e. a vertex-coloring !

A best solution partitions the trees i@f trees that all share no "label" >

Makes one zero-duplication tree for each part.
Connects these k subtrees with at most k — 1 duplications.




What I1s so hard about it ?

G, + G;

This is a partition of the vertices of our graph into
Independent sets, i.e. a vertex-coloring !

A best solution partitions the trees i@f trees that all share no "label" >

Makes one zero-duplication tree for each part.
Connects these k subtrees with at most k — 1 duplications.




The plan

In this talk I...

O ...come up with supertree problems
o Finding a supergenetree that minimizes duplications

O ...convince you that they're hard

o ...try to do something about it
o Exact, brute-force algorithm
o A greedy heuristic



Extending the BUILD algorithm

o Given a set of trees G, the BUILD algorithm
outputs, If it exists, a supertree T displaying
every tree of G

T might be partially resolved (non-binary)

Every binary resolution of T displays G

- BUILD can be extended to output every
supertree displaying G + every minimally
resolved (Constantinescu & Sankoff, 1995, Ng
& Wormald, 1996, Semple, 2003)



Extending the BUILD algorithm

BUILD graph
vertices = genes
edges = genes together in some triplet

a; by Cy b, C,
GZ/\ a, C,
a; by C,



Extending the BUILD algorithm

BUILD graph
vertices = genes
edges = genes together in some triplet

a; by C, b, C,
G, a, C,
\ Partition of connected components =
possible splits at the root
a; by Co



Extending the BUILD algorithm

BUILD graph
vertices = genes

G, edges = genes together in some triplet
\A / )
C,

b,
.
\ Partition of connected components =
possible splits at the root




Extending the BUILD algorithm

BUILD graph
vertices = genes

a; by C1
GZ
\ Partition of connected components =
possible splits at the root




Extending the BUILD algorithm

BUILD graph
vertices = genes
edges = genes together in some triplet

Partition of connected components =
possible splits at the root

AN s




Extending the BUILD algorithm

For every partially unresolved tree T obtained
In this fashion :

Find a resolution that minimizes the number of
duplications (linear time, Lafond & al. 2012)

In the worst case, there are Q(n"?) trees to
resolve (Jansson, Lemence, Lingas, 2012).

Total time : Q(n * n"?)

Worst case In practice : ?



Extending the BUILD algorithm

o Trying every partition of the components can
take some time.

o Instead, let’s find a way to choose a partition
that "looks good".



A greedy approach

m AN KN KN
d, b, e ¢

a b c d e f a, dy ¢ 1 e 0




A greedy approach

AR AL KRN

d, b, e e, f

We already know that some duplications will
be required.



A greedy approach

SAN KN\ /<\
b c d e f a, d; ¢, d; b, e e, f)

We already know that some duplications will
be required.

Focus on the "highest" ones, i.e. those that
occur before the first speciation in S.



A greedy approach

m N AN, AN,

a, d; ¢, d; b; e

We already know that some duplications will
be required.

Focus on the "highest" ones, i.e. those that
occur before the first speciation in S.



A greedy approach

m N AN, AN,

a, d; ¢, d; b; e

We already know that some duplications will
be required.

Focus on the "highest" ones, i.e. those that
occur before the first speciation in S.

We call those duplication Pre Speciation
Duplications (PreSpecDups).



A greedy approach

m N AN, AN,

a, d; ¢, d; b; e

We already know that some duplications will
be required.

Focus on the "highest" ones, i.e. those that
occur before the first speciation in S.

We call those duplication Pre Speciation
Duplications (PreSpecDups).

New subproblem : minimize only these
PreSpecDups




A greedy approach

SR SR SRR

d, b, e

- Make the BUILD graph and
Identify the components.



A greedy approach

m N AN, AN,

a, d; ¢, d; b; e

- Make the BUILD graph and
Identify the components.

- Add a special edge between
components that requires a
PreSpecDup when split.

©




A greedy approach

m N AN, AN,

a, d; ¢, d; b; e

- Make the BUILD graph and
Identify the components.

- Add a special edge between
components that requires a
PreSpecDup when split.

©




A greedy approach

m N AN, AN,

a, d; ¢, d; b; e

- Make the BUILD graph and
Identify the components.

- Add a special edge between
components that requires a
PreSpecDup when split.

- Find the partition that merges a
maximum of duplications.

©




A greedy approach

I

S

KRN SR SN AN

a b c d e f a, dy ¢, d; b, e ¢ e f
1+2

X

a, byd; fic; e




A greedy approach

I
S
AN TAN TAN
a b c d e f a, dy ¢, d; b, e ¢ e f
2




A greedy approach

AR, AN RN KN

1 dy ¢

1 bl el 1 el fl

That’s a Max-Cut !!




Extending the BUILD algorithm

To minimize the number of PreSpecDups :
Make the BUILD graph
Add the PreSpecDup edges
Find a Max-Cut partition of the components
Repeat recursively on the parts



Extending the BUILD algorithm

To minimize the number of PreSpecDups :
- Make the BUILD graph

- Add the PreSpecDup edges
o Find a Max-Cut partition of the components
- Repeat recursv%bkon the parts

That’s NP-Hard ! And we have
to repeat it recursively !




Extending the BUILD algorithm

To minimize the number of PreSpecDups :
- Make the BUILD graph

- Add the PreSpecDup edges
o Find a Max-Cut partition of the components
- Repeat recursv%Bkon the parts

That’s NP-Hard ! And we have
to repeat it recursively !!

The result : even this problem
IS hard to approximate !




Conclusion

Fixed Parameter Tractability ?

Criteria other than duplications ?
e.g. gene losses

What to do if the input gene trees are
iIncompatible ?



Acknowledgements

3

e i e RS
PN IR o
,“.s S oy Bk gt
wal W U5 S 2a I A SATN LR

Aida Ouangraoua

NSERC
CRSNG

Canada Research Chairs
www.chairs-chaires.gc.ca

Nadia El-Mabrouk

Fonds de recherche
Nature et
technologies

Québec m

€*» DIRO



The 14t RECOMB-CG
October 2016 in MONTREAL ©

Probably from Monday 10 to Wednesday 12

3
g
o

.

0 i

CENTRE Université AL

DE RECHERCHES deMontréal
MATHEMATIQUES




