
RECONSTRUCTING A

SUPERGENETREE MINIMIZING

RECONCILIATION

Manuel Lafond1, Aïda Ouangraoua2, Nadia El-Mabrouk1

1Université de Montréal
2Université de Sherbrooke

The plan

In this talk I…

 …come up with supertree problems

 Finding a supergenetree that minimizes duplications

 …convince you that they’re hard

 …try to do something about it

 Exact, brute-force algorithm

 A greedy heuristic

TP53 gene tree(s)

PhylomeDB

Ensembl

HOGENOM

TreeFam

TreeFam

TP53 gene tree(s)

PhylomeDB

Ensembl

HOGENOM

Ensembl + PhylomeDB + TreeFam + HOGENOM + …

TreeFam

TP53 gene tree(s)

PhylomeDB

Ensembl

HOGENOM

SUPERGENETREE !

Ensembl + PhylomeDB + TreeFam + HOGENOM + …

Clusters of orthologous groups

Clusters of orthologous groups

G1

Clusters of orthologous groups

G1

G2

Clusters of orthologous groups

G1

G2

…

Clusters of orthologous groups

G1

G2

…
SUPERGENETREE !

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

a b c d e

S

Species tree

 Gene tree label = species

 Multiple copies (paralogs)

 e.g. a1, a2, a3

 Gene trees may be partial +

discordant with S (e.g. G3)a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

 Our goal : find a gene tree

that displays them all

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

 Our goal : find a gene tree

that displays them all

a1 c2 e1 b1 a2 a3 d1c1

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

 Our goal : find a gene tree

that displays them all

a1 c2 e1 b1 a2 a3 d1c1

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

 Our goal : find a gene tree

that displays them all

a1 c2 e1 b1 a2 a3 d1c1

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

Multiple gene trees

c1

a1

 Our goal : find a gene tree

that displays them all

a2 a3 d1c1a1 c2 e1 b1

SuperGeneTree

 Our trees are said compatible if there is a

supertree displaying them all

 Finding a supertree (or determining

incompatibility) is an old problem

 The BUILD algorithm does that (Aho & al., 1981)

 What’s different about supergenetrees ?

SuperGeneTree

 Our trees are said compatible if there is a

supertree displaying them all

 Finding a supertree (or determining

incompatibility) is an old problem

 The BUILD algorithm does that (Aho & al., 1981)

 What’s different about supergenetrees ?

 We have the species tree

SuperGeneTree

 Often, many supergenetrees exist

 Which one is the best ?

 We explore ways to choose using
information from the species tree S

 More specifically, we explore ways to use
reconciliation with S to pick the best
supergenetree

Reconciliation

a b c d

S

c2

G

Reconciliation identifies duplication, speciation

and loss events in G.

a1 b1 c1 d2

Reconciliation

a b c d

S

c2

G

Reconciliation identifies duplication, speciation

and loss events in G.

Duplication

Speciation

a1 b1 c1 d2

Reconciliation

a b c d

S

c2

G

Reconciliation identifies duplication, speciation

and loss events in G.

Apparent

Non-apparent

a1 b1 c1 d2

Reconciliation

a b c d

S

a1 b1 c1 d2 c2

G

Reconciliation identifies duplication, speciation

and loss events in G.

Losses

c

d

ab

ab

d

Reconciliation

a b c d

S

a1 b1 c1 d2 c2

G

Reconciliation identifies duplication, speciation

and loss events in G.

Possible reconciliation costs : #dups, #dups + #losses

c

d
ab

d

ab

Reconciliation

a b c d

S

a1 b1 c1 d2 c2

G

Reconciliation identifies duplication, speciation

and loss events in G.

Possible reconciliation costs : #dups, #dups + #losses

c

d
ab

d

ab

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

c1

a1 c2 e1 b1 a2 a3 d1c1

a1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

c1

a1 c2 e1 b1 a2 a3 d1c1

a1

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

c1

a1 c2 e1 b1 a2 a3 d1c1

a1

WHICH IS BETTER ???

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 b1 d1

a2 a3 c2

b1 e1 a2

G1

G2

G3

c1

a1 c2 e1 b1 a2 a3 d1c1

a1

Count the duplications !

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 c2 e1 b1 a2 a3 d1c1

a b c d e

S

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 c2 e1 b1 a2 a3 d1c1

a b c d e

S

a1 c2e1b1 a2 a3 d1
c1

The Supergenetree problem

a1 c2 e1 b1 a2 a3 d1c1

a b c d e

S

a1 c2e1b1 a2 a3 d1
c1

BETTER

The plan

In this talk I…

 …come up with supertree problems

 Finding a supergenetree that minimizes duplications

 …convince you that they’re hard

 …try to do something about it

 Exact, brute-force algorithm

 A greedy heuristic

SuperGeneTree Problem 1

 Given: a set of compatible gene trees

G = {G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

SuperGeneTree Problem 1

 Given: a set of compatible gene trees

G = {G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

 NP-Complete

SuperGeneTree Problem 1

 Given: a set of compatible gene trees

G = {G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

 NP-Complete

 NP-Hard to approximate within a n1-ε factor

Independent speciation trees

G1

G2

…
No two trees share a

common gene + all trees
of orthologous groups

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

a1 c3 d3

G3

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

a1 c3 d3

G3

Independent = each

gene appears only once

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

a3 d3 c3

G4

Independent speciation trees

a b c d

S

a1 b1 c1

a2 c2 d2

G1

G2

a3 d3 c3

G4

Speciation trees = all
speciation (all agree with

S)

SuperGeneTree Problem 2

 Given: a set of independent speciation gene

trees G = {G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

SuperGeneTree Problem 2

 Given: a set of independent speciation gene

trees G = {G1, …, Gk} and a species tree S

 Find: a SuperGeneTree G* that

 displays every tree of G

 minimizes #dups(G*, S)

 NP-Complete

The plan

In this talk I…

 …come up with supertree problems

 Finding a supergenetree that minimizes duplications

 …convince you that they’re hard

 …try to do something about it

 Exact, brute-force algorithm

 A greedy heuristic

What is so hard about it ?

x1 w1 a1

G1

x2 y1 c1

G3

w2 z1 b1

G2

y2 z2 d1

G4

v1 v2

v3 v4

We will find a vertex-coloring of our graph

(a partition into independent sets)

What is so hard about it ?

x1 w1 a1

G1

x2 y1 c1

G3

w2 z1 b1

G2

y2 z2 d1

G4

v1 v2

v3 v4

Gi, Gj share a gene from the same species (i.e. a label) iff vi, vj share an edge



Gi, Gj can be merged into a supertree without duplications iff vi, vj share no edge

What is so hard about it ?

x1 w1 a1

G1

x2 y1 c1

G3

w2 z1 b1

G2

y2 z2 d1

G4

v1 v2

v3 v4

Gi, Gj share a gene from the same species (i.e. a label) iff vi, vj share an edge



Gi, Gj can be merged into a supertree without duplications iff vi, vj share no edge

What is so hard about it ?

x1 w1 a1

G1

x2 y1 c1

G3

w2 z1 b1

G2

y2 z2 d1

G4

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

What is so hard about it ?

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

Makes one zero-duplication tree for each part.

G1 + G4

(0 dups)
G2 + G3

(0 dups)

What is so hard about it ?

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

Makes one zero-duplication tree for each part.

Connects these k subtrees with at most k – 1 duplications.

G1 + G4

(0 dups)
G2 + G3

(0 dups)

What is so hard about it ?

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

Makes one zero-duplication tree for each part.

Connects these k subtrees with at most k – 1 duplications.

G1 + G4

(0 dups)
G2 + G3

(0 dups)

This is a partition of the vertices of our graph into

independent sets, i.e. a vertex-coloring !

What is so hard about it ?

v1 v2

v3 v4

A best solution partitions the trees into k sets of trees that all share no "label"

Makes one zero-duplication tree for each part.

Connects these k subtrees with at most k – 1 duplications.

G1 + G4

(0 dups)
G2 + G3

(0 dups)

This is a partition of the vertices of our graph into

independent sets, i.e. a vertex-coloring !

The plan

In this talk I…

 …come up with supertree problems

 Finding a supergenetree that minimizes duplications

 …convince you that they’re hard

 …try to do something about it

 Exact, brute-force algorithm

 A greedy heuristic

Extending the BUILD algorithm

 Given a set of trees G, the BUILD algorithm
outputs, if it exists, a supertree T displaying
every tree of G

 T might be partially resolved (non-binary)

 Every binary resolution of T displays G

 BUILD can be extended to output every
supertree displaying G + every minimally
resolved (Constantinescu & Sankoff, 1995, Ng
& Wormald, 1996, Semple, 2003)

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components =

possible splits at the root

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components =

possible splits at the root

a1 b1 c1

a2 c2

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components =

possible splits at the root

a1 b1 c1

a2 c2
a1 b1 c1

a2

c2

Extending the BUILD algorithm

BUILD graph

vertices = genes

edges = genes together in some triplet

a1 b1 c1

a1 b1 c2

b1 c1 a2

G1

G2

G3

a1

b1
c1

c2a2

Partition of connected components =

possible splits at the root

a1 b1 c1

a2 c2
a1 b1 c1

a2

c2

…

Extending the BUILD algorithm

 For every partially unresolved tree T obtained
in this fashion :

 Find a resolution that minimizes the number of
duplications (linear time, Lafond & al. 2012)

 In the worst case, there are Ω(nn/2) trees to
resolve (Jansson, Lemence, Lingas, 2012).

 Total time : Ω(n * nn/2)

 Worst case in practice : ?

Extending the BUILD algorithm

 Trying every partition of the components can

take some time.

 Instead, let’s find a way to choose a partition

that "looks good".

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will

be required.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will

be required.

Focus on the "highest" ones, i.e. those that

occur before the first speciation in S.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will

be required.

Focus on the "highest" ones, i.e. those that

occur before the first speciation in S.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will

be required.

Focus on the "highest" ones, i.e. those that

occur before the first speciation in S.

We call those duplication Pre Speciation

Duplications (PreSpecDups).

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

We already know that some duplications will

be required.

Focus on the "highest" ones, i.e. those that

occur before the first speciation in S.

We call those duplication Pre Speciation

Duplications (PreSpecDups).

New subproblem : minimize only these

PreSpecDups

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

b1

a1

d1

e1

c1

f1

Γ

- Make the BUILD graph and

identify the components.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

- Make the BUILD graph and

identify the components.

- Add a special edge between

components that requires a

PreSpecDup when split.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

- Make the BUILD graph and

identify the components.

- Add a special edge between

components that requires a

PreSpecDup when split.

b1

a1

d1

e1c1

e.g.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

- Make the BUILD graph and

identify the components.

- Add a special edge between

components that requires a

PreSpecDup when split.

- Find the partition that merges a

maximum of duplications.

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

a1 b1 d1 f1 c1 e1

1 + 2

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

a1 b1 d1 c1 e1 f1

1

2

A greedy approach

c1 e1 f1a1 d1 c1 d1 b1 e1
a b c d e f

S
G1 G2 G3

2

1b1

a1

d1

e1

c1

f1

Γ

a1 b1 d1 f1 c1 e1

1 + 2

That’s a Max-Cut !!

Extending the BUILD algorithm

To minimize the number of PreSpecDups :

 Make the BUILD graph

 Add the PreSpecDup edges

 Find a Max-Cut partition of the components

 Repeat recursively on the parts

Extending the BUILD algorithm

To minimize the number of PreSpecDups :

 Make the BUILD graph

 Add the PreSpecDup edges

 Find a Max-Cut partition of the components

 Repeat recursively on the parts

That’s NP-Hard ! And we have

to repeat it recursively !!

Extending the BUILD algorithm

To minimize the number of PreSpecDups :

 Make the BUILD graph

 Add the PreSpecDup edges

 Find a Max-Cut partition of the components

 Repeat recursively on the parts

That’s NP-Hard ! And we have

to repeat it recursively !!

The result : even this problem

is hard to approximate !

Conclusion

 Fixed Parameter Tractability ?

 Criteria other than duplications ?

 e.g. gene losses

 What to do if the input gene trees are

incompatible ?

Aïda Ouangraoua Nadia El-Mabrouk

Acknowledgements

The 14th RECOMB-CG

October 2016 in MONTRÉAL 
Probably from Monday 10 to Wednesday 12

