
Optimal Local Buffer Management
for Information Gathering

with Adversarial Traffic

Stefan Dobrev, Slovak Academy of Sciences, Slovakia

Manuel Lafond, University of Ottawa, Canada

Lata Narayanan, Concordia University, Canada

Jaroslav Opatrny, Concordia University, Canada

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

2

Network has a special node s called the sink.

Packets enter the network at discrete time steps.

Each packet generated by the network is destined for the sink.

Our networks are all trees directed towards s.

s

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

3

Each arc has capacity c.

Adversary can inject packets at a rate of c.

Goal: fill up node buffers as much as possible.

Locality constraints: each node can only see the state of the
nodes at (undirected) distance at most l.

s

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

4

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

s

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

5

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

a

Step 1

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

6

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 2

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

7

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

a

Step 1

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

8

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 2

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

9

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 1

a

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

10

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 2

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

11

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 1

a

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

12

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 2

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

13

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 1

a

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

14

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 2

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

15

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 1

a

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

16

2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1 (always send policy)

s

Step 2

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Information gathering with adversary

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

17

Node buffer has size 3.

Could we have done better, using another policy?

What buffer size is sufficient against any adversarial strategy?
Depends on policy. So, which policy requires minimum buffer size?

s

Step 2

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Related work

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

18

Adversarial queueing theory introduced in [Borodin et al., 2001]

Each packet can have its own destination + forced route.

Stability of a policy: are buffer sizes bounded by some f(n) for all input
streams? Greedy policies are stable for all DAGs when c = 1.

There exist universally stable policies (stable on any network) when c =
1 [Andrews et al., 2001] (though f(n) can be exponential in n).

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Related work

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

19

Adversarial queueing theory introduced in [Borodin et al., 2001]

Each packet can have its own destination + forced route.

Stability of a policy: are buffer sizes bounded by some f(n) for all input
streams? Greedy policies are stable for all DAGs when c = 1.

There exist universally stable policies (stable on any network) when c =
1 [Andrews et al., 2001] (though f(n) can be exponential in n).

Competitive Network Throughput model [Aiello et al., 2003]

Buffer sizes are fixed to some constant B.

Goal: minimize number of dropped packets.

For B = 1, any online deterministic algorithm is Ω(n)-competitive.

For B > 1, O(𝑛)-competitiveness can be achieved.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Related work

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

21

Maximum buffer size for information gathering studied in
[Kothapalli and Scheideler, 2003] on undirected paths

More powerful adversary that turns edges on/off each round.

Θ(log n)-competitiveness upper/lower bound.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Related work

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

22

Maximum buffer size for information gathering studied in
[Kothapalli and Scheideler, 2003] on undirected paths

More powerful adversary that turns edges on/off each round.

Θ(log n)-competitiveness upper/lower bound.

Maximum buffer size on directed paths (our setting) [Miller and
Patt-Shamir, DISC 2016]

With no locality constraints (every node can see the whole network),
O(c) buffer size is sufficient.

With locality constraints:

• “Always send” requires Θ(n) buffer size.

• “Forward iff successor empty” requires Θ(r) packets after r rounds.

• “Local downhill”, which forwards iff successor has strictly less packets in
its buffer, requires Θ(n) buffer size.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Our results

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

23

Information gathering on directed paths and trees with locality l and
injection rate c

Ω(c log n/l) lower bound on required buffer sizes

• more precisely c(1 + (log n – 2 log l)/(2l))

Asymptotic lower bound also holds for undirected paths

For c = 1 and l = 1, upper bound of O(log n) on directed paths

• More precisely log n + 3 upper bound

For c = 1 and l = 2, upper bound of O(log n) on trees

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Our results

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

24

Information gathering on directed paths and trees with locality l and
injection rate c

Ω(c log n/l) lower bound on required buffer sizes

• more precisely c(1 + (log n – 2 log l)/(2l))

Asymptotic lower bound also holds for undirected paths

For c = 1 and l = 1, upper bound of O(log n) on directed paths

• More precisely log n + 3 upper bound

For c = 1 and l = 2, upper bound of O(log n) on trees

Patt-Shamir and Rosenbaum present essentially the same results in
their PODC 2017 paper (!)

Same algorithms, different analysis

Stronger bounds of O(log diam(G)) for trees

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Lower bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

25

…

How can adversary enforce O(log n) buffer size on at least one
node?

Rough idea for c = 1, l = 1

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Lower bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

26

How can adversary enforce O(log n) buffer size on at least one
node?

Rough idea for c = 1, l = 1

(path on n nodes)

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Lower bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

27

How can adversary enforce O(log n) buffer size on at least one
node?

Rough idea for c = 1, l = 1

(path on n nodes)

a

1. Adversary successively injects n packets at the tail. No packet has time to

get to the sink => The packet density becomes

d = #packets / #nodes = n/n = 1

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Lower bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

28

How can adversary enforce O(log n) buffer size on at least one
node?

Rough idea for c = 1, l = 1

(path on n nodes)

a

1. Adversary successively injects n packets at the tail. No packet has time to

get to the sink => The packet density becomes

d = #packets / #nodes = n/n = 1

2. Next, adversary successively injects at the head. The head can never empty

its buffer.

At some point, every node (except the head) will stop sending forward.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Lower bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

29

How can adversary enforce O(log n) buffer size on at least one
node?

Rough idea for c = 1, l = 1

3. The next step is to obtain an interval of n/2 nodes with density 1 + ½.

If right half already has this density, we are done. If not, the left half must

have density at least ½.

n/2n/2

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Lower bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

30

How can adversary enforce O(log n) buffer size on at least one
node?

Rough idea for c = 1, l = 1

3. The next step is to obtain an interval of n/2 nodes with density 1 + ½.

If right half already has this density, we are done. If not, the left half must

have density at least ½.

4. In this case, adversary injects n/2 packets at the tail. Recall that every node

has stopped sending forward until something changes. The last node of the

left half won’t catch on until n/2 injections.

The density of the left half becomes at least ½ + 1.

n/2n/2

a

Density ½ + n/2 packets

=> density 1 + ½

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Lower bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

31

How can adversary enforce O(log n) buffer size on at least one
node?

Rough idea for c = 1, l = 1

5. Adversary can repeat this procedure on the 1 + ½ interval. This can

be applied up to log n times, after which the density is 1 + ½ log n,

implying that some node has at least this buffer size.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

32

How can we ensure that buffer size O(log n) is enough?

c = 1, l = 1

Simple algorithm for a node v with successor v’:

If v currently has odd buffer size, send to v’ iff bufsize(v) ≥ bufsize(v’)

If v currently has even buffer size, send to v’ iff bufsize(v) > bufsize(v’)

Claim: if every node runs this algorithm, O(log n) buffer size is
enough.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

33

Example of before and after step 2

If v currently has odd buffer size, send to v’ iff bufsize(v) ≥ bufsize(v’)

If v currently has even buffer size, send to v’ iff bufsize(v) > bufsize(v’)

1 1 2 2 2 1

0 2 2 2 1 1

Will send Won’t send Will send

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/24/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

34

Simple algorithm for a node v with successor v’:

If v currently has odd buffer size, send to v’ iff bufsize(v) ≥ bufsize(v’)

If v currently has even buffer size, send to v’ iff bufsize(v) > bufsize(v’)

Claim: if every node runs this algorithm, O(log n) buffer size is
enough.

Intuition: if only “send when ≥” is applied, packets accumulate in
the front on the path. If only “send when >” is applied, packets
accumulate in the back of the path.

Alternating between the two policies spreads out packets in the
middle.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

35

Order the packets p1, p2, …, pk of a node v arbitrarily (at end of
round)

Call h(v) = k the height of v (i.e. its number of packets)

Idea: for i ≥ 3, for packet pi to exist, there must be nodes u1, u2, …,
uk-2 of heights 1,2,…,i – 2, respectively.

“Attach” each packet pi to nodes u1, u2, …, ui-2

0 2 2 3 1 1

Packet p3

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

36

Idea: for i ≥ 3, for the i-th packet to exist, there must be nodes u1,
u2, …, uk-2 of heights 1,2,…,i – 2, respectively.

“Attach” each i-th packet to nodes u1, u2, …, ui-2

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

37

Attachment scheme:

For every node v, each of its packets pi is attached to nodes of height
1,2,…,i-2 (for every i ≥ 3)

No two nodes are attached to the same packet.

Lemma: if the even-odd algorithm is used, at the end of every
round, there exists an attachment scheme.

Proof idea: oh jeez…

Theorem: the maximum size of a buffer is log n + 3

Proof idea: counting argument using attachment scheme. If a node has a
packet plog n + 4, this implies the existence of distinct attached nodes of
height log n + 2, log n + 1, …, 1. Plus the nodes attached to plog n + 3, to
plog n + 2, etc. Plus the nodes attached to these attached nodes, and so on.
By counting appropriately, we end up with > n nodes, a contradiction.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

38

Attachment scheme:

For every node v, each of its packets pi is attached to nodes of height
1,2,…,i-2 (for every i ≥ 3)

No two nodes are attached to the same packet.

Lemma: if the even-odd algorithm is used, at the end of every
round, there exists an attachment scheme.

Proof idea: oh jeez…

How do we prove this?!

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

39

Attachment scheme:

For every node v, each of its packets pi is attached to nodes of height
1,2,…,i-2 (for every i ≥ 3)

No two nodes are attached to the same packet.

Lemma: if the even-odd algorithm is used, at the end of every
round, there exists an attachment scheme.

Proof idea: oh jeez…

How do we prove this?!

Induction on the number of rounds. True at round 0 when every node has
height 0.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

40

Lemma: if the even-odd algorithm is used, at the end of every
round, there exists an attachment scheme.

Proof idea: oh jeez…

How do we prove this?!

Induction on the number of rounds. True at round 0 when every node has
height 0.

For the induction step, start the round with a valid attachment scheme.

Process the round, retain attachments that are still valid.

Some node have gained height (“up nodes”) and must find attachments.

Some nodes have lost height (“down nodes”) and have attachments to
give.

Match each up node with a distinct down node, and pass unused
attachments.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Up nodes and down nodes

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

41

Example of before-step-1, after-step-1, after-step-2

1 1 2 2 2 1

1 1 3 2 2 1

0 2 2 3 1 1

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Up nodes and down nodes

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

42

After each round of two mini-steps, each node has either -1, +1, +2
or +0 buffer size.

1 1 2 2 2 1

1 1 3 2 2 1

0 2 2 3 1 1

-1 +1 +0 +1 -1 +0

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Up nodes and down nodes

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

43

After each round of two mini-steps, each node has either -1, +1, +2
or +0 buffer size.

Focus on the +1 and -1 nodes. (to simplify things, assume no +2)

+1-1 -1 +1 +1 -1 +1 -1

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Up nodes and down nodes

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

44

After each round of two mini-steps, each node has either -1, +1, +2
or +0 buffer size.

Focus on the +1 and -1 nodes. (to simplify things, assume no +2)

Make +1/-1 node pairs by traversing from left to right, matching the
unmatched nodes encountered with their nearest right neighbor.

+1-1 -1 +1 +1 -1 +1 -1

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Up nodes and down nodes

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

45

After each round of two mini-steps, each node has either -1, +1, +2
or +0 buffer size.

Focus on the +1 and -1 nodes. (to simplify things, assume no +2)

Make +1/-1 node pairs by traversing from left to right, matching the
unmatched nodes encountered with their nearest right neighbor.

Lemma: every matched pair has a +1 and a -1.

+1-1 -1 +1 +1 -1 +1 -1

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Up nodes and down nodes

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

46

For example…

1 1 2 2 2 1

1 1 3 2 2 1

0 2 2 3 1 1

-1 +1 +0 +1 -1 +0

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Handling a -1/+1 pair

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

47

3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Handling a -1/+1 pair

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

48

3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Handling a -1/+1 pair

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

49

3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round

Needs attachmentsUnused attachments

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Handling a -1/+1 pair

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

50

3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round

Needs attachmentsUnused attachments

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Handling a -1/+1 pair

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

51

3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round

Needs attachmentsUnused attachments

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Up nodes and down nodes

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

52

Process each +1/-1 subpath independently. After each has been
handled, we have obtained a valid attachment scheme.

Many, many subcases and annoying details to handle in the
attachments passing (e.g. +2 nodes).

The odd-even algorithm is needed for this proof to work – in some
special cases of attachment passing.

Unfortunately, too technical to describe here. Sorry!

+1-1 -1 +1 +1 -1 +1 -1

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Algorithm on trees

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

53

Slight modification of the odd-even algorithm required on trees.

For nodes of indegree > 1, give priority to the highest node.

Apply the same odd-even algorithm on the nodes that have priority.

…

6

4

5

5

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Algorithm on trees

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

54

…

6

4

5

5

Send

Don’t send

Slight modification of the odd-even algorithm required on trees.

For nodes of indegree > 1, give priority to the highest node.

Apply the same odd-even algorithm on the nodes that have priority.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Algorithm on trees

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

55

Locality 2 is needed to determine who has priority.

With locality 1 on trees, 𝑛 buffer size lower bound.

Our algorithm partitions the tree into priority paths. The path
analysis can be applied to each path individually.

Just more cases to handle.

S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Conclusion

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

56

We have shown a Ω(log n) lower bound + matching O(log n) lower
bound for paths when c=1, l=1 + trees when l=2.

What about c > 1 ? See Patt-Shamir & Rosenbaum paper.

What of non-uniform edge capacities?

We only cared about the node with highest buffer size. But
adversary can’t make every buffer of size log n. Alternative
criterion for space requirements?

What if we allow randomization…

In the node algorithms?

In the packet injection model (instead of an adversary)?

Competitiveness of information gathering in general DAGs?

