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Network has a special node s called the sink.

Packets enter the network at discrete time steps.

Each packet generated by the network is destined for the sink.

Our networks are all trees directed towards s.
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Each arc has capacity c.

Adversary can inject packets at a rate of c.  

Goal: fill up node buffers as much as possible.

Locality constraints: each node can only see the state of the 
nodes at (undirected) distance at most l.

s
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

s
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)

s

a

Step 1
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)

s

Step 2
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)
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Step 1
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)

s

Step 2
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)

s

Step 1
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)

s

Step 2
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)

s

Step 2
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)

s

Step 2
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)

s

Step 1
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2 mini-steps model: each round has 2 steps

Step 1: adversary injects up to c packets into the network.

Step 2: each node sends up to c packets forward.

Example with c = 1   (always send policy)

s

Step 2
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Node buffer has size 3.

Could we have done better, using another policy?

What buffer size is sufficient against any adversarial strategy?
Depends on policy.  So, which policy requires minimum buffer size?

s

Step 2
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Adversarial queueing theory introduced in [Borodin et al., 2001]

Each packet can have its own destination + forced route.

Stability of a policy: are buffer sizes bounded by some f(n) for all input 
streams? Greedy policies are stable for all DAGs when c = 1.

There exist universally stable policies (stable on any network) when c = 
1 [Andrews et al., 2001] (though f(n) can be exponential in n).
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Adversarial queueing theory introduced in [Borodin et al., 2001]

Each packet can have its own destination + forced route.

Stability of a policy: are buffer sizes bounded by some f(n) for all input 
streams? Greedy policies are stable for all DAGs when c = 1.

There exist universally stable policies (stable on any network) when c = 
1 [Andrews et al., 2001] (though f(n) can be exponential in n).

Competitive Network Throughput model [Aiello et al., 2003]

Buffer sizes are fixed to some constant B.

Goal: minimize number of dropped packets.

For B = 1, any online deterministic algorithm is Ω(n)-competitive.

For B > 1, O( 𝑛)-competitiveness can be achieved.
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Maximum buffer size for information gathering studied in 
[Kothapalli and Scheideler, 2003] on undirected paths

More powerful adversary that turns edges on/off each round.

Θ(log n)-competitiveness upper/lower bound.
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Maximum buffer size for information gathering studied in 
[Kothapalli and Scheideler, 2003] on undirected paths

More powerful adversary that turns edges on/off each round.

Θ(log n)-competitiveness upper/lower bound.

Maximum buffer size on directed paths (our setting) [Miller and  
Patt-Shamir, DISC 2016]

With no locality constraints (every node can see the whole network), 
O(c) buffer size is sufficient. 

With locality constraints:

• “Always send” requires Θ(n) buffer size.

• “Forward iff successor empty” requires Θ(r) packets after r rounds.

• “Local downhill”, which forwards iff successor has strictly less packets in 
its buffer, requires Θ(n) buffer size.
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Information gathering on directed paths and trees with locality l and 
injection rate c

Ω(c log n/l) lower bound on required buffer sizes 

• more precisely c(1 + (log n – 2 log l)/(2l)) 

Asymptotic lower bound also holds for undirected paths

For c = 1 and l = 1, upper bound of O(log n) on directed paths

• More precisely log n + 3 upper bound

For c = 1 and l = 2, upper bound of O(log n) on trees
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Information gathering on directed paths and trees with locality l and 
injection rate c

Ω(c log n/l) lower bound on required buffer sizes 

• more precisely c(1 + (log n – 2 log l)/(2l)) 

Asymptotic lower bound also holds for undirected paths

For c = 1 and l = 1, upper bound of O(log n) on directed paths

• More precisely log n + 3 upper bound

For c = 1 and l = 2, upper bound of O(log n) on trees

Patt-Shamir and Rosenbaum present essentially the same results in 
their PODC 2017 paper (!)

Same algorithms, different analysis

Stronger bounds of O(log diam(G)) for trees
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…

How can adversary enforce O(log n) buffer size on at least one 
node?

Rough idea for c = 1, l = 1
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How can adversary enforce O(log n) buffer size on at least one 
node?

Rough idea for c = 1, l = 1

(path on n nodes)
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How can adversary enforce O(log n) buffer size on at least one 
node?

Rough idea for c = 1, l = 1

(path on n nodes)

a

1. Adversary successively injects n packets at the tail.  No packet has time to 

get to the sink => The packet density becomes 

d = #packets / #nodes = n/n = 1
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How can adversary enforce O(log n) buffer size on at least one 
node?

Rough idea for c = 1, l = 1

(path on n nodes)

a

1. Adversary successively injects n packets at the tail.  No packet has time to 

get to the sink => The packet density becomes 

d = #packets / #nodes = n/n = 1

2. Next, adversary successively injects at the head.  The head can never empty 

its buffer.

At some point, every node (except the head) will stop sending forward.
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How can adversary enforce O(log n) buffer size on at least one 
node?

Rough idea for c = 1, l = 1

3. The next step is to obtain an interval of n/2 nodes with density 1 + ½.

If right half already has this density, we are done.  If not, the left half must 

have density at least ½.  

n/2n/2
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How can adversary enforce O(log n) buffer size on at least one 
node?

Rough idea for c = 1, l = 1

3. The next step is to obtain an interval of n/2 nodes with density 1 + ½.

If right half already has this density, we are done.  If not, the left half must 

have density at least ½.  

4. In this case, adversary injects n/2 packets at the tail.  Recall that every node 

has stopped sending forward until something changes.  The last node of the 

left half won’t catch on until n/2 injections.  

The density of the left half becomes at least ½ + 1.

n/2n/2

a

Density ½ + n/2 packets 

=> density 1 + ½ 
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How can adversary enforce O(log n) buffer size on at least one 
node?

Rough idea for c = 1, l = 1

5. Adversary can repeat this procedure on the 1 + ½ interval.  This can 

be applied up to log n times, after which the density is 1 + ½ log n, 

implying that some node has at least this buffer size.
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How can we ensure that buffer size O(log n) is enough?

c = 1, l = 1

Simple algorithm for a node v with successor v’:

If v currently has odd buffer size, send to v’ iff bufsize(v) ≥ bufsize(v’)

If v currently has even buffer size, send to v’ iff bufsize(v) > bufsize(v’)

Claim: if every node runs this algorithm, O(log n) buffer size is 
enough.



S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

33

Example of before and after step 2

If v currently has odd buffer size, send to v’ iff bufsize(v) ≥ bufsize(v’)

If v currently has even buffer size, send to v’ iff bufsize(v) > bufsize(v’)

1 1 2 2 2 1

0 2 2 2 1 1

Will send Won’t send Will send
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Simple algorithm for a node v with successor v’:

If v currently has odd buffer size, send to v’ iff bufsize(v) ≥ bufsize(v’)

If v currently has even buffer size, send to v’ iff bufsize(v) > bufsize(v’)

Claim: if every node runs this algorithm, O(log n) buffer size is 
enough.

Intuition: if only “send when ≥” is applied, packets accumulate in 
the front on the path.  If only “send when >” is applied, packets 
accumulate in the back of the path.

Alternating between the two policies spreads out packets in the 
middle.



S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

35

Order the packets p1, p2, …, pk of a node v arbitrarily (at end of 
round)

Call h(v) = k the height of v (i.e. its number of packets)

Idea: for i ≥ 3, for packet pi to exist, there must be nodes u1, u2, …, 
uk-2 of heights 1,2,…,i – 2, respectively.

“Attach” each packet pi to nodes u1, u2, …, ui-2

0 2 2 3 1 1

Packet p3



S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Upper bound on directed path

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

36

Idea: for i ≥ 3, for the i-th packet to exist, there must be nodes u1, 
u2, …, uk-2 of heights 1,2,…,i – 2, respectively.

“Attach” each i-th packet to nodes u1, u2, …, ui-2
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Attachment scheme:

For every node v, each of its packets pi is attached to nodes of height 
1,2,…,i-2 (for every i ≥ 3) 

No two nodes are attached to the same packet.

Lemma: if the even-odd algorithm is used, at the end of every
round, there exists an attachment scheme.

Proof idea: oh jeez…

Theorem: the maximum size of a buffer is log n + 3

Proof idea: counting argument using attachment scheme.  If a node has a 
packet plog n + 4, this implies the existence of distinct attached nodes of 
height log n + 2, log n + 1, …, 1.  Plus the nodes attached to plog n + 3, to
plog n + 2, etc.  Plus the nodes attached to these attached nodes, and so on.  
By counting appropriately, we end up with > n nodes, a contradiction.
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Attachment scheme:

For every node v, each of its packets pi is attached to nodes of height 
1,2,…,i-2 (for every i ≥ 3) 

No two nodes are attached to the same packet.

Lemma: if the even-odd algorithm is used, at the end of every
round, there exists an attachment scheme.

Proof idea: oh jeez…

How do we prove this?!
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Attachment scheme:

For every node v, each of its packets pi is attached to nodes of height 
1,2,…,i-2 (for every i ≥ 3) 

No two nodes are attached to the same packet.

Lemma: if the even-odd algorithm is used, at the end of every
round, there exists an attachment scheme.

Proof idea: oh jeez…

How do we prove this?!

Induction on the number of rounds.  True at round 0 when every node has 
height 0.
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Lemma: if the even-odd algorithm is used, at the end of every
round, there exists an attachment scheme.

Proof idea: oh jeez…

How do we prove this?!

Induction on the number of rounds.  True at round 0 when every node has 
height 0.

For the induction step, start the round with a valid attachment scheme.

Process the round, retain attachments that are still valid.  

Some node have gained height (“up nodes”) and must find attachments.

Some nodes have lost height (“down nodes”) and have attachments to
give.  

Match each up node with a distinct down node, and pass unused 
attachments.
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Example of before-step-1, after-step-1, after-step-2

1 1 2 2 2 1

1 1 3 2 2 1

0 2 2 3 1 1



S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Up nodes and down nodes

7/23/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

42

After each round of two mini-steps, each node has either -1, +1, +2 
or +0 buffer size.

1 1 2 2 2 1

1 1 3 2 2 1

0 2 2 3 1 1

-1 +1 +0 +1 -1 +0
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After each round of two mini-steps, each node has either -1, +1, +2 
or +0 buffer size.

Focus on the +1 and -1 nodes.  (to simplify things, assume no +2)

+1-1 -1 +1 +1 -1 +1 -1
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After each round of two mini-steps, each node has either -1, +1, +2 
or +0 buffer size.

Focus on the +1 and -1 nodes.  (to simplify things, assume no +2)

Make +1/-1 node pairs by traversing from left to right, matching the 
unmatched nodes encountered with their nearest right neighbor.

+1-1 -1 +1 +1 -1 +1 -1
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After each round of two mini-steps, each node has either -1, +1, +2 
or +0 buffer size.

Focus on the +1 and -1 nodes.  (to simplify things, assume no +2)

Make +1/-1 node pairs by traversing from left to right, matching the 
unmatched nodes encountered with their nearest right neighbor.

Lemma: every matched pair has a +1 and a -1.

+1-1 -1 +1 +1 -1 +1 -1
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For example…

1 1 2 2 2 1

1 1 3 2 2 1

0 2 2 3 1 1

-1 +1 +0 +1 -1 +0
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3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round
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3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round
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3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round

Needs attachmentsUnused attachments
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3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round

Needs attachmentsUnused attachments
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3 5 5 5 5 6

Before round

3 4 5 5 6 6

After round

Needs attachmentsUnused attachments
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Process each +1/-1 subpath independently.  After each has been 
handled, we have obtained a valid attachment scheme.

Many, many subcases and annoying details to handle in the
attachments passing (e.g. +2 nodes).

The odd-even algorithm is needed for this proof to work – in some 
special cases of attachment passing.

Unfortunately, too technical to describe here.  Sorry!

+1-1 -1 +1 +1 -1 +1 -1
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Slight modification of the odd-even algorithm required on trees.

For nodes of indegree > 1, give priority to the highest node.

Apply the same odd-even algorithm on the nodes that have priority.

…

6

4

5

5
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…

6

4

5

5

Send

Don’t send

Slight modification of the odd-even algorithm required on trees.

For nodes of indegree > 1, give priority to the highest node.

Apply the same odd-even algorithm on the nodes that have priority.
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Locality 2 is needed to determine who has priority.

With locality 1 on trees, 𝑛 buffer size lower bound.

Our algorithm partitions the tree into priority paths.  The path 
analysis can be applied to each path individually.

Just more cases to handle.



S. Dobrev, M. Lafond, L. Narayanan, J. Opatrny

Conclusion

7/25/2017
Optimal Local Buffer Management for Information Gathering
with Adversarial Traffic

56

We have shown a Ω(log n) lower bound + matching O(log n) lower 
bound for paths when c=1, l=1 + trees when l=2.

What about c > 1 ?  See Patt-Shamir & Rosenbaum paper.

What of non-uniform edge capacities?

We only cared about the node with highest buffer size.  But 
adversary can’t make every buffer of size log n.  Alternative 
criterion for space requirements?

What if we allow randomization…

In the node algorithms?

In the packet injection model (instead of an adversary)?

Competitiveness of information gathering in general DAGs?


