POLYTOMY REFINEMENT FOR THE CORRECTION OF DUBIOUS DUPLICATIONS IN GENE TREES

Manuel Lafond¹, Cedric Chauve^{2,3}, Riccardo Dondi⁴, Nadia El-Mabrouk¹

¹ Université de Montréal, Canada

- ² Université Bordeaux 1, France
- ³ Simon Fraser University, Canada
- ⁴ Universitá degli Studi di Bergamo, Italy

• Gene tree for the SLC24a2 gene family (solute carrier 24)

• Species tree for the species having a gene in G.

G and S disagree

 LCA MAPPING : associate each ancestral gene with the species it belonged to

• G and S disagree => Duplication of an ancestral gene

- Extant species are expected to have **2 copies** of the gene
- None of them do. That's dubious !

 If some species was represented on both sides of the duplication, it would be an Apparent Duplication (AD)

 Non-apparent duplication (NAD) : the left and right subtrees of the duplication share no gene from the same species.

- Missing gene copies must have been **lost** sometime ago.
- NADs usually imply a bunch of losses.

- NADs are called dubious, or ambiguous duplications in the Ensembl database.
- About 44% of duplication nodes are dubious.
 - The SLC24 gene tree has 32 duplication nodes, 24 of which are dubious.
- Simulations showed that only 5% percent of duplications were actually NADs (Chauve & Mabrouk, 2009).

Alternative scenario for the root of G : no duplication occurred.

 Alternative scenario for the root of G : no duplication occurred => speciation => the bat genes should be separated from the others.

 Break G as least as possible : send the maximal bat subtrees left, and the maximal rodent/primate subtrees right

 Break G as least as possible : send the maximal bat subtrees left, and the maximal rodent/primate subtrees right

- G' ends up with possibly two unresolved polytomies.
- We are looking for a binary refinement of these polytomies.

- Other sources of polytomies :
 - Lack of phylogenetic signal in the sequences, causing some gene tree construction algorithms to leave the gene tree partially unresolved.
 - Contraction of gene tree branches having low support (e.g. bootstrap values).

Previous works

- Find a **binary refinement** minimizing:
 - **Duplications + losses** (Chang & Eulenstein, 2006, *O*(*n*³));
 - Duplications + losses (Lafond & Swenson & El-Mabrouk, 2012, O(n))
 - Duplications and then losses (Zheng, Wu, Zhang, 2012, O(n))
 - Losses: It's a linear problem.
- Our problem here:

Minimize NAD nodes

 For all these optimization criteria, polytomies can be refined independantly. Thus we reduce the problem to a single polytomy.

- Given : a polytomy P and a species tree S
- Find : a binary refinement of P that minimizes the number of NADs created.

- Given : a polytomy P and a species tree S
- Objective : find a binary refinement of P that minimizes the number of NADs created.

- Given : a polytomy P and a species tree S
- Objective : find a binary refinement of P that minimizes the number of NADs created.

A simple example

 a_1

C₁ d₁ b₁ a_2 C_2

 \mathbf{e}_1

 a_1

C₁ d₁ b₁ a_2 C_2

 \mathbf{e}_1

e₁

 a_1 ,(a2, b1) are connected by Apparent Duplication (AD)

 a_1 C_1

 e_1

 \mathbf{e}_1

a₁,(a2, b1) are connected by Non-Apparent Duplication (NAD)

 e_1

Relationship graph

Each subtree is a vertex.

Each pair of vertices (x,y) is connected by an edge labeled by the connection type of x and y.

а

е

Each subtree is a vertex.

Each pair of vertices (x,y) is connected by an edge labeled by the connection type of x and y.

а

е

С

Each subtree is a vertex.

Each pair of vertices (x,y) is connected by an edge labeled by the connection type of x and y.

AD

Spec

Speciation clique : a clique exclusively made up of "Spec" edges.

Speciation clique : a clique exclusively made up of "Spec" edges.

Speciation clique : a clique exclusively made up of "Spec" edges.

There exists a binary refinement with a minimum of d NADs iff there exists a set of disjoint **speciation cliques** W in the relationship graph such that W + the AD edges have a **minimum of d + 1 connected components.**

Given a graph with Spec and AD edges, find a set of cliques W such that W + the AD edges has the **minimum number of connected components.**

Given a graph with Spec and AD edges, find a set of cliques W such that W + the AD edges has the **minimum number of connected components.**

Given a graph R with Spec and AD edges, find a set of cliques W such that R restricted to W + the AD edges has the **minimum number of connected components.**

In general, finding W is an NP-Hard problem.

But R is not just any graph !

Characterization of the relationships The relationship graph restricted to the Spec edges is $\{P_4, 2K_2\}$ -free.

Characterization of the relationships The relationship graph restricted to the Spec edges is $\{P_4, 2K_2\}$ -free.

Characterization of the relationships The relationship graph restricted to the Spec edges is $\{P_4, 2K_2\}$ -free.

Given a graph R with Spec and AD edges, find a set of cliques W such that R restricted to W + the AD edges has the **minimum number of connected components.**

In general, finding W is an NP-Hard problem.

But R is not just any graph !

R is {P4, 2k2}-free.

Complexity for this class of graphs : who knows?

Since our goal is to connect AD connected components using Spec edges, take Spec edges that "link" two AD-components until there is possible choice left.

Since our goal is to connect AD connected components using Spec edges, take Spec edges that "link" two AD-components until there is possible choice left.

Since our goal is to connect AD connected components using Spec edges, take Spec edges that "link" two AD-components until there is possible choice left.

And since we are looking for cliques, remove edges that couldn't form a clique with our chosen edge.

And since we are looking for cliques, remove edges that couldn't form a clique with our chosen edge.

Update the graph, and repeat.

- Bounds : using this idea, we developed a heuristic that can be at most twice as bad as the best solution (in terms of AD components connected)
- If the graph has no Spec edge inside an AD-Component, the heuristic is exact.

Random polytomy/species tree

We generated 1000 random polytomies having n subtrees for each n = 4..14 (along with a random species tree)

Heuristic vs Brute force

The heuristic **always** found a refinement with the minimum number of NADs.

Minimizing NADs vs # of duplications + losses

In 39,7% of random trees, finding a binary refinement the minimizes dups + losses **does not minimize the number of NADs created.**

Ensembl updates : what happens to NADs ?

Events inferred at the root of NAD clades after Ensembl update (993 trees of fish genes, highest NAD only)

NAD fate (v70 => v74)	% of NADs
NAD => Speciation	63.4 % (630 trees)
NAD => NAD	35.5 % (352 trees)
NAD => Apparent Duplication	1.1 % (11 trees)

Comparison with Ensembl updates Corrected NAD Correction **Ensembl V70** а С b d Ensembl V74 b d а С Assembly/sequences update b а С d

RF-Distance between Our correction vs Ensembl Updated Tree

Likelihood

We found 4454 NAD nodes in 1896 Ensembl fish gene trees.

For each tree T and each NAD node x T_x is the tree obtained by correcting NAD node x $R(x) = LogLH(T) / LogLH(T_x)$

43.9% of NAD nodes yielded a **better likelihood** (R(x) > 1) after correction

62.4% of the trees contained at least one NAD yielding a better likelihood after correction

Conclusion

- When does NAD correction/minimization apply ?
- Our heuristic builds a resolution that places duplications as "high" as possible. We should consider exploring other (or all) solutions.
- Is the problem NP-Hard ? Is there a polynomial time algorithm that solves it ?