POLYTOMY REFINEMENT FOR THE CORRECTION OF DUBIOUS DUPLICATIONS IN GENE TREES

Manuel Lafond ${ }^{1}$, Cedric Chauve ${ }^{2,3}$, Riccardo Dondi ${ }^{4}$, Nadia El-Mabrouk ${ }^{1}$

[^0]
Introduction

- Gene tree for the SLC24a2 gene family (solute carrier 24)

Introduction

- Species tree for the species having a gene in G.

Introduction

- G and S disagree

G :
SLC SLC SLC SLC SLC SLC SLC Mous Rat MicBat Hum Chmp MegBat Sqrl

Introduction

- LCA MAPPING : associate each ancestral gene with the species it belonged to

Introduction

- \mathbf{G} and \mathbf{S} disagree => Duplication of an ancestral gene

Z
G:
Z
SLC SLC SLC SLC SLC SLC SLC Mous Rat MicBat Hum Chmp MegBat SqrI

Introduction

- Extant species are expected to have 2 copies of the gene
- None of them do. That's dubious!

Introduction

- If some species was represented on both sides of the duplication, it would be an Apparent Duplication (AD)

Introduction

- Non-apparent duplication (NAD) : the left and right subtrees of the duplication share no gene from the same species.

Z
G :

$\begin{array}{ccccccc}\text { SLC } & \text { SLC SLC } & \text { SLC } \\ \text { Mous } & \text { Rat MicBat } & \text { Hum } & \text { Chmp MegBat } & \text { SqrI }\end{array}$

Introduction

- Missing gene copies must have been lost sometime ago.
- NADs usually imply a bunch of losses.

Introduction

- NADs are called dubious, or ambiguous duplications in the Ensembl database.
- About 44\% of duplication nodes are dubious.
- The SLC24 gene tree has 32 duplication nodes, 24 of which are dubious.
- Simulations showed that only 5% percent of duplications were actually NADs (Chauve \& Mabrouk, 2009).

Introduction

- Alternative scenario for the root of G : no duplication occurred.
S :
 G:

[^1]
Introduction

- Alternative scenario for the root of G : no duplication occurred => speciation => the bat genes should be separated from the others.

Introduction

- Break G as least as possible : send the maximal bat subtrees left, and the maximal rodent/primate subtrees right

Introduction

- Break G as least as possible : send the maximal bat subtrees left, and the maximal rodent/primate subtrees right

Introduction

- G' ends up with possibly two unresolved polytomies.
- We are looking for a binary refinement of these polytomies.

Introduction

- Other sources of polytomies :
- Lack of phylogenetic signal in the sequences, causing some gene tree construction algorithms to leave the gene tree partially unresolved.
- Contraction of gene tree branches having low support (e.g. bootstrap values).

Previous works

- Find a binary refinement minimizing:
- Duplications + losses (Chang \& Eulenstein, 2006, O(n^{3}));
- Duplications + losses (Lafond \& Swenson \& El-Mabrouk, 2012, O(n))
- Duplications and then losses (Zheng, Wu, Zhang, 2012, O(n))
- Losses: It's a linear problem.
- Our problem here:

Minimize NAD nodes

- For all these optimization criteria, polytomies can be refined independantly. Thus we reduce the problem to a single polytomy.

Introduction

- Given : a polytomy P and a species tree S
- Find : a binary refinement of P that minimizes the number of NADs created.

Introduction

- Given : a polytomy P and a species tree S
- Objective : find a binary refinement of P that minimizes the number of NADs created.

Introduction

- Given : a polytomy P and a species tree S
- Objective : find a binary refinement of P that minimizes the number of NADs created.

A simple example

Reconnecting subtrees

Reconnecting subtrees

a_{1}, c_{1} are connected by Speciation
 (S)

e_{1}

Reconnecting subtrees

Reconnecting subtrees

$\mathrm{a}_{1},(\mathrm{a} 2, \mathrm{~b} 1)$ are connected by
Apparent Duplication (AD)

Reconnecting subtrees

Reconnecting subtrees

$a_{1},(a 2, b 1)$ are connected by NonApparent Duplication (NAD)

e_{1}

Relationship graph

Each subtree is a vertex.
Each pair of vertices (x, y) is connected by an edge labeled by the connection type of x and y.

Relationship graph

Each subtree is a vertex.
Each pair of vertices (x, y) is connected by an edge labeled by the connection type of x and y.

(e)

(c)

Relationship graph

Each subtree is a vertex.
Each pair of vertices (x, y) is connected by an edge labeled by the connection type of x and y.

—— Spec
$=A D$
$=-=-$ NAD

Relationship graph

Speciation clique : a clique exclusively made up of "Spec" edges.

Relationship graph

Speciation clique : a clique exclusively made up of "Spec" edges.

Relationship graph

Speciation clique : a clique exclusively made up of "Spec" edges.

Theorem

There exists a binary refinement with zero NADs iff there exists a set of disjoint speciation cliques W in the relationship graph such that $\mathrm{W}+$ the AD edges form a single connected component.

Theorem

There exists a binary refinement with zero NADs iff there exists a set of disjoint speciation cliques W in the relationship graph such that $\mathrm{W}+$ the AD edges form a single connected component.

Theorem

There exists a binary refinement with zero NADs iff there exists a set of disjoint speciation cliques W in the relationship graph such that $\mathrm{W}+$ the AD edges form a single connected component.

Theorem

There exists a binary refinement with zero NADs iff there exists a set of disjoint speciation cliques W in the relationship graph such that $\mathrm{W}+$ the AD edges form a single connected component.

Theorem

There exists a binary refinement with zero NADs iff there exists a set of disjoint speciation cliques W in the relationship graph such that W + the AD edges form a single connected component.

Theorem

There exists a binary refinement with a minimum of d NADs iff there exists a set of disjoint speciation cliques W in the relationship graph such that W + the AD edges have a minimum of $d+1$ connected components.

Problem reformulation

Given a graph with Spec and AD edges, find a set of cliques W such that W + the AD edges has the minimum number of connected components.

Problem reformulation

Given a graph with Spec and AD edges, find a set of cliques W such that W + the $A D$ edges has the minimum number of connected components.

Problem reformulation

Given a graph R with Spec and AD edges, find a set of cliques W such that R restricted to W + the $A D$ edges has the minimum number of connected components.

In general, finding W is an NP-Hard problem.

But R is not just any graph !

Characterization of the relationships

The relationship graph restricted to the Spec edges is $\left\{\mathrm{P}_{4}, 2 \mathrm{~K}_{2}\right\}$-free.

Characterization of the relationships

The relationship graph restricted to the Spec edges is $\left\{\mathrm{P}_{4}, 2 \mathrm{~K}_{2}\right\}$-free.

Characterization of the relationships

The relationship graph restricted to the Spec edges is $\left\{\mathrm{P}_{4}, 2 \mathrm{~K}_{2}\right\}$-free.

Problem reformulation

Given a graph R with Spec and AD edges, find a set of cliques W such that R restricted to W + the $A D$ edges has the minimum number of connected components.

In general, finding W is an NP-Hard problem.

But R is not just any graph !
R is $\{P 4,2 k 2\}$-free.

Complexity for this class of graphs : who knows?

Heuristic

Since our goal is to connect AD connected components using Spec edges, take Spec edges that "link" two AD-components until there is possible choice left.

Heuristic

Since our goal is to connect AD connected components using Spec edges, take Spec edges that "link" two AD-components until there is possible choice left.

NOT THIS ONE!

Heuristic

Since our goal is to connect AD connected components using Spec edges, take Spec edges that "link" two AD-components until there is possible choice left.

Heuristic

And since we are looking for cliques, remove edges that couldn't form a clique with our chosen edge.

CAN'T BE CHOSEN!

Heuristic

And since we are looking for cliques, remove edges that couldn't form a clique with our chosen edge.
Update the graph, and repeat.

Heuristic

- Bounds : using this idea, we developed a heuristic that can be at most twice as bad as the best solution (in terms of AD components connected)
- If the graph has no Spec edge inside an AD-Component, the heuristic is exact.

Random polytomy/species tree

We generated 1000 random polytomies having n subtrees for each $n=4 . .14$ (along with a random species tree)

Heuristic vs Brute force
The heuristic always found a refinement with the minimum number of NADs.

Minimizing NADs vs \# of duplications + losses
In 39,7\% of random trees, finding a binary refinement the minimizes dups + losses does not minimize the number of NADs created.

Ensembl updates : what happens to NADs?

Ensembl V70

Assembly/sequences update

Ensembl V74

Events inferred at the root of NAD clades after Ensembl update (993 trees of fish genes, highest NAD only)

NAD fate (v70 $\Rightarrow>$ v74)	$\%$ of NADs	
NAD $=>$ Speciation	63.4%	$(630$ trees $)$
NAD $=>$ NAD	35.5%	$(352$ trees $)$
NAD $=>$ Apparent Duplication	1.1%	(11 trees)

Comparison with Ensembl updates

Corrected

Ensembl V74

RF-Distance between Our correction vs Ensembl Updated Tree

65\% of corrected trees share $>80 \%$ clades with Ensembl updated tree.

For those trees that Ensembl made NAD => Spec, 44% are identical to our corrected tree.

Likelihood

We found 4454 NAD nodes in 1896 Ensembl fish gene trees.

For each tree T and each NAD node x

$$
\begin{aligned}
& T_{x} \text { is the tree obtained by correcting NAD node } x \\
& R(x)=\log L H(T) / \log L H\left(T_{x}\right)
\end{aligned}
$$

43.9\% of NAD nodes yielded a better likelihood $(R(x)>1)$ after correction
62.4\% of the trees contained at least one NAD yielding a better likelihood after correction

Conclusion

- When does NAD correction/minimization apply ?
- Our heuristic builds a resolution that places duplications as "high" as possible. We should consider exploring other (or all) solutions.
- Is the problem NP-Hard? Is there a polynomial time algorithm that solves it ?

[^0]: ${ }^{1}$ Université de Montréal, Canada
 ${ }^{2}$ Université Bordeaux 1, France
 ${ }^{3}$ Simon Fraser University, Canada
 ${ }^{4}$ Universitá degli Studi di Bergamo, Italy

[^1]: SLC SLC SLC SLC SLC SLC SLC Mous Rat MicBat Hum Chmp MegBat Sqrl

