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Introduction

• Gene tree for the SLC24a2 gene family (solute carrier 24)
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Introduction

• Species tree for the species having a gene in G.
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Introduction

• G and S disagree
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Introduction

• LCA MAPPING : associate each ancestral gene with the 

species it belonged to

S :

Mous RatMicBat Hum ChmpMegBat Sqrl

G :

SLC

Mous
SLC

Rat

SLC

MicBat
SLC

Hum

SLC

Chmp
SLC

MegBat

SLC

Sqrl

u
v w

x

y

z

v

z

w z

z

z



Introduction

• G and S disagree => Duplication of an ancestral gene
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Introduction

• Extant species are expected to have 2 copies of the gene

• None of them do.  That’s dubious !
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Introduction

• If some species was represented on both sides of the 

duplication, it would be an Apparent Duplication (AD)
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Introduction

• Non-apparent duplication (NAD) : the left and right 

subtrees of the duplication share no gene from the same 

species.
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Introduction

• Missing gene copies must have been lost sometime ago.

• NADs usually imply a bunch of losses.
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Introduction

• NADs are called dubious, or ambiguous duplications in 

the Ensembl database.

• About 44% of duplication nodes are dubious.

• The SLC24 gene tree has 32 duplication nodes, 24 of which are 

dubious.

• Simulations showed that only 5% percent of duplications 

were actually NADs (Chauve & Mabrouk, 2009).



Introduction

• Alternative scenario for the root of G : no duplication 

occurred.
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Introduction
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• Alternative scenario for the root of G : no duplication 

occurred => speciation => the bat genes should be 

separated from the others.



Introduction

• Break G as least as possible : send the maximal bat 

subtrees left, and the maximal rodent/primate subtrees

right
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Introduction
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Introduction

• G’ ends up with possibly two unresolved polytomies.

• We are looking for a binary refinement of these 

polytomies.
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Introduction

• Other sources of polytomies : 

• Lack of phylogenetic signal in the sequences, causing some gene 

tree construction algorithms to leave the gene tree partially 

unresolved.

• Contraction of gene tree branches having low support (e.g. 

bootstrap values).
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Previous works

• Find a binary refinement minimizing:

• Duplications + losses (Chang & Eulenstein, 2006, O(n3));

• Duplications + losses (Lafond & Swenson & El-Mabrouk, 2012, 

O(n))

• Duplications and then losses (Zheng, Wu, Zhang, 2012, O(n))

• Losses: It’s a linear problem.

• Our problem here: 

Minimize NAD nodes

• For all these optimization criteria, polytomies can be 

refined independantly. Thus we reduce the problem to a 

single polytomy.



Introduction

• Given : a polytomy P and a species tree S

• Find : a binary refinement of P that minimizes the number 

of NADs created.
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Introduction

• Given : a polytomy P and a species tree S

• Objective : find a binary refinement of P that minimizes 

the number of NADs created.
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Introduction

• Given : a polytomy P and a species tree S

• Objective : find a binary refinement of P that minimizes 

the number of NADs created.
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A simple example
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Relationship graph
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Each subtree is a vertex.

Each pair of vertices (x,y) is connected by an edge labeled 

by the connection type of x and y.
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Each pair of vertices (x,y) is connected by an edge labeled 
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Speciation clique : a clique exclusively made up of “Spec” 

edges.
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Theorem

Spec AD NAD

There exists a binary refinement with zero NADs iff there exists a set of 

disjoint speciation cliques W in the relationship graph such that W + the 

AD edges form a single connected component.
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Theorem

Spec AD NAD

There exists a binary refinement with zero NADs iff there exists a set of 

disjoint speciation cliques W in the relationship graph such that W + the 

AD edges form a single connected component.

a a b

c

c d

e a c

e

a b



Theorem

Spec AD NAD

There exists a binary refinement with zero NADs iff there exists a set of 

disjoint speciation cliques W in the relationship graph such that W + the 

AD edges form a single connected component.
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Theorem
There exists a binary refinement with a minimum of d NADs iff

there exists a set of disjoint speciation cliques W in the 

relationship graph such that W + the AD edges have a 

minimum of d + 1 connected components.



Problem reformulation
Given a graph with Spec and AD edges, find a set of cliques W 

such that W + the AD edges has the minimum number of 

connected components.
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Problem reformulation
Given a graph R with Spec and AD edges, find a set of cliques 

W such that R restricted to W + the AD edges has the 

minimum number of connected components.

In general, finding W is an NP-Hard problem.

But R is not just any graph !



Characterization of the relationships
The relationship graph restricted to the Spec edges 

is {P4, 2K2}-free.
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Problem reformulation
Given a graph R with Spec and AD edges, find a set of cliques 

W such that R restricted to W + the AD edges has the 

minimum number of connected components.

In general, finding W is an NP-Hard problem.

But R is not just any graph !

R is {P4, 2k2}-free.

Complexity for this class of graphs : who knows? 



Heuristic
Since our goal is to connect AD connected components using 

Spec edges, take Spec edges that “link” two AD-components 

until there is possible choice left.
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Heuristic
Since our goal is to connect AD connected components using 

Spec edges, take Spec edges that “link” two AD-components 

until there is possible choice left.



Heuristic
And since we are looking for cliques, remove edges that 

couldn’t form a clique with our chosen edge.

CAN’T BE CHOSEN !



Heuristic
And since we are looking for cliques, remove edges that 

couldn’t form a clique with our chosen edge.

Update the graph, and repeat.



Heuristic
• Bounds : using this idea, we developed a heuristic that can 

be at most twice as bad as the best solution (in terms of AD 

components connected)

• If the graph has no Spec edge inside an AD-Component, 

the heuristic is exact.



Random polytomy/species tree
We generated 1000 random polytomies having n subtrees for 

each n = 4..14 (along with a random species tree)

Heuristic vs Brute force

The heuristic always found a refinement with the minimum 

number of NADs.

Minimizing NADs vs # of duplications + losses

In 39,7% of random trees, finding a binary refinement the 

minimizes dups + losses does not minimize the number of 

NADs created.



Ensembl updates : what happens to NADs ?

a b c d

Assembly/sequences

update

Ensembl V74Ensembl V70

NAD fate (v70 => v74) % of NADs

NAD => Speciation 63.4 %   (630 trees)

NAD => NAD 35.5 %   (352 trees)

NAD => Apparent Duplication 1.1 %     (11 trees)

Events inferred at the root of NAD clades after Ensembl update 

(993 trees of fish genes, highest NAD only)
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Comparison with Ensembl updates
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RF-Distance between 

Our correction vs Ensembl Updated Tree

(Distance ratio)

65% of corrected trees 

share > 80% clades 

with Ensembl updated 

tree.

For those trees that 

Ensembl made 

NAD => Spec,

44% are identical to 

our corrected tree.



Likelihood
We found 4454 NAD nodes in 1896 Ensembl fish gene trees.

For each tree T and each NAD node x

Tx is the tree obtained by correcting NAD node x

R(x) = LogLH (T) / LogLH(Tx)

43.9% of NAD nodes yielded a better likelihood (R(x) > 1) 

after correction 

62.4% of the trees contained at least one NAD yielding a 

better likelihood after correction



Conclusion
• When does NAD correction/minimization apply ?

• Our heuristic builds a resolution that places duplications as 

“high” as possible.  We should consider exploring other (or 

all) solutions.

• Is the problem NP-Hard ?  Is there a polynomial time 

algorithm that solves it ?


