An optimal reconciliation ALGORITHM FOR GENE TREES WITH POLYTOMIES

Manuel Lafond, Krister M. Swenson, Nadia El Mabrouk DIRO, Université de Montréal

Introduction

- Gene family
- Several similar genes that have evolved from a common ancestor
- Usually identified by sequence similarity
- Dup-loss model : Evolution scenario determined by three kinds of events
- Speciation : a new species is created, one copy of the gene existing in both species
- Duplication : the gene is duplicated, giving the species at least two copies of it
- Loss : the gene disappears from the family

Gene family history

Reconciliation

- Given : a set of genes in the same family, a gene tree G and a species tree S
- Infer : the evolutionary events that have led to the observed gene tree

Gene tree
Species tree

Reconciliation

- A reconciliation is an «extension» of G that is consistent with S i.e. reflects the same phylogeny

Species tree

Reconciliation tree

Reconciliation

- Parsimony criterion : minimum number of duplications + losses (mutation cost)

Species tree

Reconciliation tree

LCA Mapping

- Many possible reconciliation trees
- LCA Mapping (Bonizzoni et al., 2003)
- Map each node of G with the lowest common ancestor of its leaves
- Minimizes the duplication+loss cost in linear time
- The label of a node x is the LCA mapping of x

Motivation

- Most known methods work with binary gene trees
- In case of uncertainty, a gene tree can be nonbinary (weak edges)
- Non-binary nodes are called polytomies
- Reconciliation trees are binary

Polytomies

- Each polytomy can be solved independently (Chang \& Eulenstein, 2006)
- Cubic time algorithm for each polytomy

Polytomies

- Each polytomy can be solved independently (Chang \& Eulenstein, 2006)

Polytomies

- Each polytomy can be solved independently (Chang \& Eulenstein, 2006)

Polytomies

- Each polytomy can be solved independently (Chang \& Eulenstein, 2006)

The core problem

- Find the minimum cost reconciliation between a species tree and a polytomy

Resolution

- A reconciliation between S and a binary refinement of G .

Resolution

- $B(G)$ is a binary refinement of G

Resolution

- $R(B(G))$ is a reconciliation between S and $B(G)$

Problem statement

- Given : a binary species tree S and a polytomy G
- Find : a minimum mutation cost resolution of G.

Partial resolution at node s

- A tree obtained from G in which every subtree rooted at a node labeled s is consistent with the species tree.
- Every descendant of s is part of one of these subtrees.

Partial resolution cost

- The mutation cost of a partial resolution is the sum of the costs of all of its subtrees

k-partial resolution at node s

- A partial resolution with exactly k maximal subtrees rooted at s.

k-partial resolution at node s

- A partial resolution with exactly k maximal subtrees rooted at s.

Methodology

- Idea : an optimal resolution contains a minimum k partial resolution at s, for every node s in $V(S)$

Methodology

- $R(B(G))$ has a 1-partial resolution at e
- It also has a 2-partial resolution at e

- For which k's does the optimal resolution contain a kpartial resolution?

Methodology

- $\mathrm{M}(\mathrm{s}, \mathrm{k})$ denotes the minimum cost of a k-partial resolution at s
- $\mathrm{M}(\operatorname{root}(\mathrm{S}), 1)$ is the minimum cost of the full resolution of G
- The solution is a 1-partial resolution at root(S)
$R(B(G))$: a 1-partial resolution at g

Computation of M(s, k)

- We compute the values of $\mathrm{M}(\mathrm{s}, \mathrm{k})$ for each node s in $V(S)$ in a bottom-up manner, and for every k.

Computation of $\mathrm{M}(\mathrm{s}, \mathrm{k})$

- $\mathrm{M}(\mathrm{a}, 4)=0$

Computation of M(s, k)

- $\mathrm{M}(\mathrm{a}, 5)=1$ (one loss in a)

Computation of $\mathrm{M}(\mathrm{s}, \mathrm{k})$

- $\mathrm{M}(\mathrm{a}, 3)=1$ (one duplication in a)

Computation of $\mathrm{M}(\mathrm{s}, \mathrm{k})$

- Let $\mathrm{nb}(\mathrm{s})$ denote the number of leaves of G labeled S
- For instance, $n b(a)=4, n b(b)=2, \ldots$
- In general, if s is a leaf, then $M(s, k)=|k-n b(s)|$

Computation of M(s, k)

- The leaf values are easy to compute
- M(s, k) = |k -nb(s)|

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$M(a, k)$	3	2	1	$\mathbf{0}$	1	2
$M(b, k)$	1	$\mathbf{0}$	1	2	3	4
$M(c, k)$	$\mathbf{0}$	1	2	3	4	5
$M(d, k)$	1	2	3	4	5	6
$M(e, k)$						
$M(f, k)$						
$M(g, k)$						

Computation of M(s, k)

- Computing M(e, k)

Computation of $\mathrm{M}(\mathrm{s}, \mathrm{k})$

- Either
- $\mathrm{M}(\mathrm{e}, 2)=\mathrm{M}(\mathrm{a}, 2)+\mathrm{M}(\mathrm{b}, 2) \quad$ (from above - indicates speciation)
- $M(e, 2)=M(e, 1)+1 \quad$ (from the left - indicates a loss)
- $M(e, 2)=M(e, 1)+1 \quad$ (from the left - indicates a duplication)

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$\mathrm{M}(\mathrm{d}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{e}, \mathrm{k})$	x		y	z		

Computation of $\mathrm{M}(\mathrm{s}, \mathrm{k})$

- Temporarily let $\mathrm{M}(\mathrm{s}, \mathrm{k})=\mathrm{M}(\mathrm{s} 1, \mathrm{k})+\mathrm{M}(\mathrm{s} 2, \mathrm{k})$ for every k

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$M(d, k)$	\downarrow	2	3	4	5	6
$M(e, k)$	4	2	2	2	4	6

Computation of M(s, k)

- Keep the minimum values only
- If there are more than one, they will be grouped together

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$M(a, k)$	3	2	1	0	1	2
$M(b, k)$	1	0	1	2	3	4
$M(c, k)$	0	1	2	3	4	5
$M(d, k)$	1	2	3	4	5	6
$M(e, k)$		2	2	2		

Computation of $\mathrm{M}(\mathrm{s}, \mathrm{k})$

- Extend the minimums, adding one for each cell traversed

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$\mathrm{M}(\mathrm{d}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{e}, \mathrm{k})$	3	2	2	2	3	4

Computation of $\mathrm{M}(\mathrm{s}, \mathrm{k})$

- The whole table can be filled this way

$k=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$M(a, k)$	3	2	1	0	1	2
$M(b, k)$	1	0	1	2	3	4
$M(c, k)$	0	1	2	3	4	5
$M(d, k)$	1	2	3	4	5	6
$M(e, k)$	3	2	2	2	3	4
$M(f, k)$	1	2	3	4	5	6
$M(g, k)$	4	4	5	6	7	8

Computation of $\mathrm{M}(\mathrm{s}, \mathrm{k})$

- The minimum cost of a resolution of G is $\mathrm{M}(\mathrm{g}, 1)=4$

$k=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$M(a, k)$	3	2	1	0	1	2
$M(b, k)$	1	0	1	2	3	4
$M(c, k)$	0	1	2	3	4	5
$M(d, k)$	1	2	3	4	5	6
$M(e, k)$	3	2	2	2	3	4
$M(f, k)$	1	2	3	4	5	6
$M(g, k)$	4	4	5	6	7	8

Building the resolution

- Using the table, we'll find the number of duplications and losses for each node of s.

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$M(\mathrm{~b}, \mathrm{k})$	1	0	1	2	3	4
$M(c, k)$	0	1	2	3	4	5
$M(d, k)$	1	2	3	4	5	6
$M(e, k)$	3	2	2	2	3	4
$M(f, k)$	1	2	3	4	5	6
$M(g, k)$	4	4	5	6	7	8

Building the resolution

- Backtrack where the value of $M(g, 1)$ came from

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$M(d, k)$	1	2	3	4	5	6
$M(e, k)$	3	2	2	2	3	4
$M(f, k)$	1	2	3	4	5	6
$M(g, k)$	4	4	5	6	7	8

Building the resolution

- Backtrack where the value of $M(g, 1)$ came from
- $M(g, 1)=M(e, 1)+M(f, 1)$

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$\mathrm{M}(\mathrm{d}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{e}, \mathrm{k})$	3	2	2	2	3	4
$\mathrm{M}(\mathrm{f}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{g}, \mathrm{k})$	4	4	5	6	7	8

Building the resolution

- Backtrack where the value of $M(g, 1)$ came from
- $M(f, 1)=M(c, 1)+M(d, 1)$

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$\mathrm{M}(\mathrm{d}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{e}, \mathrm{k})$	3	2	2	2	3	4
$\mathrm{M}(\mathrm{f}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{g}, \mathrm{k})$	4	4	5	6	7	8

Building the resolution

- Backtrack where the value of $M(g, 1)$ came from
- $M(e, 1)=M(e, 2)+1$

k =	1	2	3	4	5	6
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
M (b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
$\mathrm{M}(\mathrm{d}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{e}, \mathrm{k})$	3	2	2	2	3	4
$\mathrm{M}(\mathrm{f}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{g}, \mathrm{k})$	4	4	5	6	7	8

- One duplication in e!

Building the resolution

- Backtrack where the value of $M(g, 1)$ came from
- $M(e, 2)=M(a, 2)+M(b, 2)$

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$\mathrm{M}(\mathrm{d}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{e}, \mathrm{k})$	3	2	2	2	2	3
$\mathrm{M}(\mathrm{f}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{g}, \mathrm{k})$	4	4	5	6	7	8

Building the resolution

- For leaves, go to the cell with value zero

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	$\mathbf{1}$	\mathbf{l}		
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	1	2	
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	
$\mathrm{M}(\mathrm{d}, \mathrm{k})$	1	2	3	4	5	
$\mathrm{M}(\mathrm{e}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{f}, \mathrm{k})$	3	1	2	2	2	3
$\mathrm{M}(\mathrm{g}, \mathrm{k})$	4	4	3	4	5	6
	4	5	6	7	8	

- Two duplications in a!

Building the resolution

- For leaves, go to the cell with value zero

k =	1	2	3	4	5	6
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	7	0	1	2
M (b, k)	1	0	1	2	3	4
M (c, k)	0	1	2	3	4	5
$\mathrm{M}(\mathrm{d}, \mathrm{k})<1$		2	3	4	5	6
$M(e, k)$	$3 \rightarrow 2$		2	2	3	4
M(f, k)	1	2	3	4	5	6
$\mathrm{M}(\mathrm{g}, \mathrm{k})$	4	4	5	6	7	8

- If there is no
zero, assume it is at column 0
- One loss in d

Building the resolution

- This gives:
- 1 duplication in e
- 1 loss in d
- 2 duplications in a

R

Computing the table

- Problem : we stopped at $k=6$, but this value was arbitrary
- Who knows when to stop ?

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$M(\mathrm{~b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$M(\mathrm{~d}, \mathrm{k})$	1	2	3	4	5	6
$M(e, k)$	3	2	2	2	3	4
$M(f, k)$	1	2	3	4	5	6
$M(g, k)$	4	4	5	6	7	8

Computing the table

- Computing this table takes $\mathrm{O}\left(|\mathrm{S}|^{*}\right.$ k-max) steps

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$\mathrm{M}(\mathrm{d}, \mathrm{k})$	1	2	3	4	5	6
$\mathrm{M}(\mathrm{e}, \mathrm{k})$	3	2	2	2	3	4
$M(f, k)$	1	2	3	4	5	6
$M(\mathrm{~g}, \mathrm{k})$	4	4	5	6	7	8

Computing the table

- The values of a row follow a pattern

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$M(\mathrm{~b}, \mathrm{k})$	1	0	1	2	3	4
$M(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$M(\mathrm{~d}, \mathrm{k})$	1	2	3	4	5	6
$M(\mathrm{e}, \mathrm{k})$	3	2	2	2	3	4
$M(\mathrm{f}, \mathrm{k})$	1	2	3	4	5	6
$M(\mathrm{~g}, \mathrm{k})$	4	4	5	6	7	8

$\mathrm{M}(\mathrm{a}, \mathrm{k})$

Computing the table

- The values of a row follow a pattern

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$\mathrm{M}(\mathrm{d}, \mathrm{k})$	1	2	3	4	5	6
$M(\mathrm{e}, \mathrm{k})$	3	2	2	2	3	4
$M(\mathrm{f}, \mathrm{k})$	1	2	3	4	5	6
$M(\mathrm{~g}, \mathrm{k})$	4	4	5	6	7	8

$M(b, k)$

Computing the table

- The values of a row follow a pattern

$\mathbf{k}=$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{M}(\mathrm{a}, \mathrm{k})$	3	2	1	0	1	2
$\mathrm{M}(\mathrm{b}, \mathrm{k})$	1	0	1	2	3	4
$\mathrm{M}(\mathrm{c}, \mathrm{k})$	0	1	2	3	4	5
$M(\mathrm{~d}, \mathrm{k})$	1	2	3	4	5	6
$M(e, k)$	3	2	2	2	3	4
$M(f, k)$	1	2	3	4	5	6
$M(\mathrm{~g}, \mathrm{k})$	4	4	5	6	7	8

$\mathrm{M}(\mathrm{e}, \mathrm{k})$

Computing the table

- The values of a row follow a pattern
- If we know m1, m2 and γ, we can find the value of $M(s, k)$ for any k in constant time
- m1, m2 are called breakpoints, and y the minimum value

Computing the table

- Finding m1, m2, y
- Easy for leaf nodes

$$
\mathrm{M}(\mathrm{a}, \mathrm{k})=|\mathrm{k}-\mathrm{nb}(\mathrm{a})|
$$

Computing the table

- For an internal node s with children a, b
- The breakpoints and min. val. of $\mathrm{M}(\mathrm{s}, \mathrm{k})$ can be computed in constant time if we know the breakpoints/min. val. of $M(a, k)$ and $M(b, k)$

$$
M(a, k), M(b, k)
$$

$M(a, k)+M(b, k)$

Conclusion

- Computing one row takes constant time, and there are |S| rows, so the « table» can be computed in $\mathrm{O}(|\mathrm{S}|)$ steps
- Finding the number of duplications and losses for each node can be done in $\mathrm{O}(|\mathrm{S}|)$ steps
- Building the resolution can be done in $\mathrm{O}(|\mathrm{S}|)$ steps as well

Conclusion

- One polytomy can be solved in $\mathrm{O}(|\mathrm{S}|)$ steps
- A complete gene tree can have up to |G| polytomies, so a complete resolution can be obtained in $\mathrm{O}(|\mathrm{G} \| \mathrm{S}|)$ steps
- In the worst case, a resolution has $\mathrm{O}(|\mathrm{G}||\mathrm{S}|)$ nodes
- Therefore, this algorithm is optimal
- It runs in as much steps as the maximum size of the output

