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Introduction

Gene family

Several similar genes that have evolved from a common
ancestor

Usually identified by sequence similarity

Dup-loss model : Evolution scenario determined
by three kinds of events

. @ hew species Is created, one copy of the
gene existing in both species

. the gene is duplicated, giving the species
at least two copies of it

. the gene disappears from the family
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Reconciliation

. a set of genes in the same family, a gene tree
G and a species tree S

. the evolutionary events that have led to the
observed gene tree

Gene tree Species tree
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Reconciliation

A reconciliation is an « extension » of G that is
with S i.e. reflects the same phylogeny

Gene tree Species tree
g
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Reconciliation

Parsimony criterion : minimum number of duplications +
losses (mutation cost)

Gene tree Species tree
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LCA Mapping

Many possible reconciliation trees

LCA Mapping (Bonizzoni et al., 2003)

Map each node of G with the of its
leaves
Minimizes the duplication+loss cost in linear time

The of a node x is the LCA mapping of x

Gene tree Species tree
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Motivation

Most known methods work with binary gene trees

In case of uncertainty, a gene tree can be non-
binary (weak edges)

Non-binary nodes are called
Reconciliation trees are binary




Polytomies

Each polytomy can be solved independently
(Chang & Eulenstein, 2006)

Cubic time algorithm for each polytomy
g
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The core problem

Find the minimum cost reconciliation between a
species tree and a polytomy




Resolution

A reconciliation between S and a
of G.




Resolution

B(G) Is a binary refinement of G

N/



Resolution

R(B(G)) is a reconciliation between S and B(G)

R(B(G))




Problem statement

. a binary species tree S and a polytomy G
. @ minimum mutation cost resolution of G.




Partial resolution at node s

A tree obtained from G in which every subtree rooted at
a node labeled s is consistent with the species tree.

Every descendant of s is part of one of these subtrees.
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Partial resolution cost

The mutation cost of a partial resolution is the sum
of the costs of all of its subtrees
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k-partial resolution at node s

A partial resolution with exactly k maximal subtrees
rooted at s.
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k-partial resolution at node s

A partial resolution with exactly k maximal subtrees
rooted at s.

S J G
m
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Methodology

ldea : an optimal resolution contains a minimum K-
partial resolution at s, for every node s in V(S)




Methodology

R(B(G)) has a 1-partial resolution at e
It also has a 2-partial resolution at e

S J R(B(G))

e

For which k’s does the optimal resolution contain a k-
partial resolution ?



Methodology

M(s, k) denotes the minimum cost of a k-partial
resolution at s

M(root(S), 1) is the minimum cost of the full resolution of G
The solution is a 1-partial resolution at root(S)

g = root(S)

R(B(G)) : a 1-partial e
resolution at g e f



Computation of M(s, k)

We compute the values of M(s, k) for each node s
In V(S) in a bottom-up manner, and for every k.

S g
m k= | 1]2]3]4[5]6]
M(a, k)
M(b, k)

M(c, K)
G M(d, k)
M(f, k)
M(e, K)
M(g, k)




Computation of M(s, k)

M(a,4)=0
s 0 -----ﬂ
M(a, k)
° : M(b, k)
a b C d M(e, k)
M(d, k)
G M(f, k)
M(e, k)
M(g, k)




Computation of M(s, k)

M(a, 5) =1 (one loss in a)

-----ﬂ

M(a, k)
M(b, K)
M(c, K)
M(d, k)
M(e, k)
M(F, k)
M(g, k)




Computation of M(s, k)

M(a, 3) = 1 (one duplication in a)

s 9 -----ﬂ

M(a, k)
M(b, k)
M(c, k)
M(d, k)
G’ M(e, k)
M(f, k)
M(g, K)




Computation of M(s, k)

Let nb(s) denote the number of leaves of G labeled
S

For instance, nb(a) = 4, nb(b) = 2, ...

In general, if s is a leaf, then M(s, k) = |k - nb(s)|




Computation of M(s, k)

The leaf values are easy to compute
M(s, k) = |k — nb(s)|

s 9 -----ﬂ

M(a, k)
M(b, K)
M(c, K)
M(d, k)
G M(e, k)
M(F, k)
M(g, k)
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Computation of M(s, k)
Computing M(e, k)

S g
2 A
M(a, k) 3
a b C d wmpw 1 0o 1 2 3 4
G M, k) O 1 2 3 4 5
Md, k) 1 2 3 4 S 6
M(e, k)




Computation of M(s, k)

Either
M(e, 2) = M(a, 2) + M(b, 2) (from above — indicates speciation)
M(e, 2) = M(e, 1) + 1 (from the left — indicates a loss)
M(e, 2) = M(e, 1) + 1 (from the left — indicates a duplication)

-----ﬂ
M(a, k)
M(b, k)

1 1 2 3 4
Mckk 0 1 2 3 4 5
M, k) 1 o 3 4 5 6
M(e, k) X y Z

+1 loss +1 dup



Computation of M(s, k)

Temporarily let M(s, k) = M(s1, k) + M(s2, k) for
every k

k= |12 /3[4]5] 6
M(a, k)
*EIGIGI6IE
M(c,k) O L y 3 1 5

M(d, k) ] P i
M(e,k) 4 2 2 2
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Computation of M(s, k)

Keep the minimum values only

If there are more than one, they will be grouped
together

-----ﬂ

M(a,k) 3

Mbkk 1 0 1 2 3 4
Mc,kk 0 1 2 3 4 5
Mdkk 1 2 3 4 5 6
M(e, k) 2 2 2



Computation of M(s, k)

Extend the minimums, adding one for each cell
traversed

-----ﬂ

M@ k) 3
Mb,ky 1 0 1 2 3 4
Mc,kk 0 1 2 3 4 5
Md,kk 1 2 3 4 5 6
M(e, k) 3 2 2 2 3 4

+1 +1  +1



Computation of M(s, k)

The whole table can be filled this way

s 9 -----ﬂ

M(a, k) 3 2

© f Mbkk 1 0 1 2 3 4

4 5 4 ¥ Mc,kk 0 1 2 3 4 5
Mdk 1 2 3 4 5 6

G M(e,k) 3 2 2 2 3 4
MK 1 2 3 4 5 6

Mg, k) 4 4 5 6 7 8




Computation of M(s, k)

The minimum cost of a resolution of G is

M(g, 1) =4
. . -----ﬂ
: M(a, k) 3 2
° Mbk 1 0 1 2 3 4
4 3 £ N Mc,kk 0 1 2 3 4 5
Md,kk 1 2 3 4 5 6
G Me, k) 3 2 2 2 3 4
MGk 1 2 3 4 5 6
M(g,k) 4 4 5 6 7 8




Building the resolution

Using the table, we'll find the number of
duplications and losses for each node of s.

-----ﬂ

M(a, k) 3 2
M@, k) 1 0 1 2 3 4
Mc,kk 0 1 2 3 4 5
M(d, k) 1 2 3 4 5 6
M(e, k) 3 2 2 2 3 4
M(f, k) 1 2 3 4 5 6
M(g, k) 4 4 5 6 7 8



Building the resolution

Backtrack where the value of M(g, 1) came from

-----ﬂ

M(a, k) 3 2
M@, k) 1 0 1 2 3 4
Mc,kk 0 1 2 3 4 5
M(d, k) 1 2 3 4 5 6
M(e, k) 3 2 2 2 3 4
M(f, k) 1 2 3 4 5 6
M(g, k) 4 4 5 6 7 8



Building the resolution

Backtrack where the value of M(g, 1) came from
M(g, 1) = M(e, 1) + M(f, 1)

-----ﬂ

M(a, k) 3 2
M(b, k) 1 0 1 2 3 4
Mc,kk 0 1 2 3 4 5
M(d, k) 1 2 3 4 5 6
M(e, k) | 3 2 2 2 3 4
M@, k) | 1 2 3 4 5 6
M(g, k) * 4 4 5 6 7 8



Building the resolution

Backtrack where the value of M(g, 1) came from
M(f, 1) = M(c, 1) + M(d, 1)

-----ﬂ

M(a, k) 3 2
M(b, k) 1 0 1 2 3 4
Mck | o] 1 2 3 4 5
M(d, k)/1 1 2 3 4 5 6
M(e, k) | 3 2 2 2 3 4
M(f, k)(\| 1 2 3 4 5 6
M(g, k) * 4 4 5 6 7 8



Building the resolution

Backtrack where the value of M(g, 1) came from
M(e, 1) = M(e, 2) + 1

-----ﬂ One duplication

M(@. k) ine!
M(b, K)
M(c, k)
M(d, k)
M(e, k)
M(f, k)
M(g, k)
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Building the resolution

Backtrack where the value of M(g, 1) came from
M(e, 2) = M(a, 2) + M(b, 2)

2 | 3456
Mak 3 |2 1 o0 1

M(b, k) 1

MG, k) | 0

M(d, K)/] 1

3

1

4

M(e, K)
M(f, K)
M(g, k)
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Building the resolution

For leaves, go to the cell with value zero

EEEEEEE - o duplications
M(a, k) 3 2 +=—3+=> 0 1 2 In a
Mbk 1 |0 [\1 2 3 4
Mk o0o| 1 2 3 4 5
M.k 1| 2 /3 4 5 6
Me k) | 3=2 /2 2 3 4
MEK(Y 1| 2 3 4 5 6
M(g, k) * 4 4 5 6 7 8



Building the resolution

For leaves, go to the cell with value zero

ENEEEEEE - i there is no
Mak 3 |2 +——=>0 1 2 Zero, assume it is
Mb,ky 1 |0 |\1 2 3 4 at column O
M(c, k) | O 1 2 3 4 5
Md,ke&=1 | 2 /3 4 5 6 .

Ve TR One loss in d
MEKN 1| 2 3 4 5 6
M(g, k) 4 4 5 6 7 8



Building the resolution

This gives :
1 duplication in e
1 lossind a
2 duplications in a




Computing the table

Problem : we stopped at k = 6, but this value was
arbitrary

Who knows when to stop ?

-----ﬂ

M(a,k) 3 2
M(b, k) 1 0 1 2 3 4
M(c, k) 0 1 2 3 4 5
M, k) 1 2 3 4 5 6
M(e, k) 3 2 2 2 3 4
Mk 1 2 3 4 5 6
M@, k) 4 4 5 6 7 8



Computing the table

Computing this table takes O(|S|* k-max) steps

-----ﬂ

M(a,k) 3 2
M(b, k) 1 0 1 2 3 4
M(c, k) O 1 2 3 4 5
M, k) 1 2 3 4 5 6
M(e, k) 3 2 2 2 3 4
M(f, k) 1 2 3 4 5 6
M(g, k) 4 4 5 6 7 8



Computing the table

The values of a row follow a pattern

-----n

M(a, k)

M(a, k) 3 2
M(b, k) 1 0 1 2 3 4
M(c, k) 0 1 2 3 4 5
Mdk 1 2 3 4 5 6
M(e, k) 3 2 2 2 3 4
M(f, k) 1 2 3 4 ) 6
M@,k 4 4 5 6 7 8



Computing the table

The values of a row follow a pattern

-----n

M(b, k)

M(a, k) 3 2
M(b, k) 1 0 1 2 3 4
M(c, k) 0 1 2 3 4 5
Mdk 1 2 3 4 5 6
M(e, k) 3 2 2 2 3 4
M(f, k) 1 2 3 4 ) 6
M@,k 4 4 5 6 7 8



Computing the table

The values of a row follow a pattern

M(e, k)

~__

-----n

M(a, K)
M(b, k)
M(c, K)
M(d, k)
M(e, K)
M(F, k)
M(g, k)
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Computing the table

The values of a row follow a pattern

N

7

m1

m2

If we know m1, m2 and
Y, we can find the value
of M(s, k) for any k in
constant time

ml, m2 are called

breakpoints, and y the
minimum value



Computing the table

Finding m1, m2, vy
Easy for leaf nodes

M(a, k) = |k — nb(a)|

m1l =m2 = nb(a)

y=0




Computing the table

For an internal node s with children a,b

The breakpoints and min. val. of M(s, k) can be
computed in constant time if we know the
breakpoints/min. val. of M(a, k) and M(b, k)

M(a, k), M(b, k) M(a, k) + M(b, k)
%al a2/ ml m2
ya ! b2 !

vb



Conclusion

Computing one row takes constant time, and there
are |S| rows, so the « table » can be computed in
O(|S]|) steps

Finding the number of duplications and losses for
each node can be done in O(|S|) steps

Building the resolution can be done in O(|S]) steps
as well



Conclusion

One polytomy can be solved in O(|S|) steps

A complete gene tree can have up to |G|
polytomies, so a complete resolution can be
obtained in O(|G||S|) steps

In the worst case, a resolution has O(|G||S|) nodes
Therefore, this algorithm is optimal

It runs in as much steps as the maximum size
of the output



