AN OPTIMAL RECONCILIATION ALGORITHM FOR GENE TREES WITH POLYTOMIES

Manuel Lafond, Krister M. Swenson, Nadia El Mabrouk DIRO, Université de Montréal

Introduction

- Gene family
 - Several similar genes that have evolved from a common ancestor
 - Usually identified by sequence similarity
- Dup-loss model : Evolution scenario determined by three kinds of events
 - Speciation: a new species is created, one copy of the gene existing in both species
 - Duplication: the gene is duplicated, giving the species at least two copies of it
 - Loss: the gene disappears from the family

Gene family history

Reconciliation

- Given: a set of genes in the same family, a gene tree
 G and a species tree
- Infer: the evolutionary events that have led to the observed gene tree

Reconciliation

 A reconciliation is an « extension » of G that is consistent with S i.e. reflects the same phylogeny

a2

b2

a1

Reconciliation

 Parsimony criterion : minimum number of duplications + losses (mutation cost)

LCA Mapping

- Many possible reconciliation trees
- LCA Mapping (Bonizzoni et al., 2003)
 - Map each node of G with the lowest common ancestor of its leaves
 - Minimizes the duplication+loss cost in linear time
 - The label of a node x is the LCA mapping of x

Motivation

- Most known methods work with binary gene trees
- In case of uncertainty, a gene tree can be nonbinary (weak edges)
- Non-binary nodes are called polytomies
- Reconciliation trees are binary

- Each polytomy can be solved independently (Chang & Eulenstein, 2006)
 - Cubic time algorithm for each polytomy

• Each polytomy can be solved independently (Chang & Eulenstein, 2006)

 Each polytomy can be solved independently (Chang & Eulenstein, 2006)

• Each polytomy can be solved independently (Chang & Eulenstein, 2006)

The core problem

 Find the minimum cost reconciliation between a species tree and a polytomy

Resolution

 A reconciliation between S and a binary refinement of G.

Resolution

B(G) is a binary refinement of G

Resolution

R(B(G)) is a reconciliation between S and B(G)

Problem statement

o Given: a binary species tree S and a polytomy G

Find: a minimum mutation cost resolution of G.

Partial resolution at node s

- A tree obtained from G in which every subtree rooted at a node labeled s is consistent with the species tree.
- Every descendant of s is part of one of these subtrees.

Partial resolution cost

 The mutation cost of a partial resolution is the sum of the costs of all of its subtrees

k-partial resolution at node s

 A partial resolution with exactly k maximal subtrees rooted at s.

k-partial resolution at node s

 A partial resolution with exactly k maximal subtrees rooted at s.

Methodology

 Idea: an optimal resolution contains a minimum kpartial resolution at s, for every node s in V(S)

Methodology

- o R(B(G)) has a 1-partial resolution at e
- It also has a 2-partial resolution at e

 For which k's does the optimal resolution contain a kpartial resolution?

Methodology

- M(s, k) denotes the minimum cost of a k-partial resolution at s
- M(root(S), 1) is the minimum cost of the full resolution of G
 - The solution is a 1-partial resolution at root(S)

 We compute the values of M(s, k) for each node s in V(S) in a bottom-up manner, and for every k.

k =	1	2	3	4	5	6
M(a, k)						
M(b, k)						
M(c, k)						
M(d, k)						
M(f, k)						
M(e, k)						
M(g, k)						

o M(a, 4) = 0

k =	1	2	3	4	5	6
M(a, k)				0		
M(b, k)						
M(c, k)						
M(d, k)						
M(f, k)						
M(e, k)						
M(g, k)						

om M(a, 5) = 1 (one loss in a)

k =	1	2	3	4	5	6
M(a, k)				0	1	
M(b, k)						
M(c, k)						
M(d, k)						
M(e, k)						
M(f, k)						
M(g, k)						

 \circ M(a, 3) = 1 (one duplication in a)

k =	1	2	3	4	5	6
M(a, k)			1	0	1	
M(b, k)						
M(c, k)						
M(d, k)						
M(e, k)						
M(f, k)						
M(g, k)						

- Let nb(s) denote the number of leaves of G labeled
 s
 - For instance, nb(a) = 4, nb(b) = 2, ...
- In general, if s is a leaf, then M(s, k) = |k nb(s)|

- The leaf values are easy to compute
- omega M(s, k) = |k nb(s)|

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)						
M(f, k)						
M(g, k)						

Computing M(e, k)

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)						

Either

- M(e, 2) = M(a, 2) + M(b, 2) (from above indicates speciation)
- M(e, 2) = M(e, 1) + 1 (from the left indicates a loss)
- M(e, 2) = M(e, 1) + 1 (from the left indicates a duplication)

k =	1	2	3	4	5	6		
M(a, k)	3	2	1	0	1	2		
M(b, k)	1	0	1	2	3	4		
M(c, k)	0	1	2	3	4	5		
M(d, k)	1	3	3	4	5	6		
M(e, k)	X	4 8	у	Z				
+1 loss +1 dup								

Temporarily let M(s, k) = M(s1, k) + M(s2, k) for every k

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k))	ı	2	3	4	5
M(d, k)	1	.2	3	4	5	6
M(e, k)	4	2	2	2	4	6

- Keep the minimum values only
 - If there are more than one, they will be grouped together

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)		2	2	2		

 Extend the minimums, adding one for each cell traversed

3	2	1	0	1	2
1	\circ				
	U	1	2	3	4
0	1	2	3	4	5
1	2	3	4	5	6
3	2	2	2	3	4
	0	0 1 1 2	0 1 2 1 2 3	0 1 2 3 1 2 3 4	0 1 2 3 4 1 2 3 4 5

The whole table can be filled this way

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

Computation of M(s, k)

• The minimum cost of a resolution of G is M(g, 1) = 4

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

 Using the table, we'll find the number of duplications and losses for each node of s.

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

Backtrack where the value of M(g, 1) came from

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

- Backtrack where the value of M(g, 1) came from
 - M(g, 1) = M(e, 1) + M(f, 1)

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

- Backtrack where the value of M(g, 1) came from
 - M(f, 1) = M(c, 1) + M(d, 1)

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)/	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

- Backtrack where the value of M(g, 1) came from
 - M(e, 1) = M(e, 2) + 1

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)/	1	2	3	4	5	6
M(e, k)	3 -	→ 2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

One duplication in e!

- Backtrack where the value of M(g, 1) came from
 - M(e, 2) = M(a, 2) + M(b, 2)

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	\1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)/	1	2	3	4	5	6
M(e, k)	3 -	> 2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

o For leaves, go to the cell with value zero

k =	1	2	3	4	5	6
M(a, k)	3	2 -	1->	• 0	1	2
M(b, k)	1	0	\1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3 -	> 2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

Two duplications in a!

o For leaves, go to the cell with value zero

k =	1	2	3	4	5	6
M(a, k)	3	2 -	1 :	0	1	2
M(b, k)	1	0	\1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3 -	> 2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

If there is no zero, assume it is at column 0

One loss in d

- This gives:
 - 1 duplication in e
 - 1 loss in d
 - 2 duplications in a

S

- Problem : we stopped at k = 6, but this value was arbitrary
- Who knows when to stop?

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

Computing this table takes O(|S|* k-max) steps

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

k =	1	2	3	4	5	6
M(a, k)	3	2	1	0	1	2
M(b, k)	1	0	1	2	3	4
M(c, k)	0	1	2	3	4	5
M(d, k)	1	2	3	4	5	6
M(e, k)	3	2	2	2	3	4
M(f, k)	1	2	3	4	5	6
M(g, k)	4	4	5	6	7	8

- If we know m1, m2 and γ, we can find the value of M(s, k) for any k in constant time
- m1, m2 are called breakpoints, and γ the minimum value

- o Finding m1, m2, γ
- Easy for leaf nodes

- For an internal node s with children a,b
- The breakpoints and min. val. of M(s, k) can be computed in constant time if we know the breakpoints/min. val. of M(a, k) and M(b, k)

Conclusion

- Computing one row takes constant time, and there are |S| rows, so the « table » can be computed in O(|S|) steps
- Finding the number of duplications and losses for each node can be done in O(|S|) steps
- Building the resolution can be done in O(|S|) steps as well

Conclusion

- One polytomy can be solved in O(|S|) steps
- A complete gene tree can have up to |G| polytomies, so a complete resolution can be obtained in O(|G||S|) steps
- In the worst case, a resolution has O(|G||S|) nodes
- Therefore, this algorithm is optimal
 - It runs in as much steps as the maximum size of the output