
IFT800 - Algorithmique

Manuel Lafond
Université de Sherbrooke

Contents

1 Introduction 4
1.1 What is an NP-complete problem? 5
1.2 What are the prerequisites for this course 6

I Approximation algorithms 7

2 Approximation algorithms 8
2.1 Approximating a minimization problem 8
2.2 Approximating a maximization problem 9
2.3 A first example with 3-SET-COVER 9
2.4 Fundamental technique: finding a bound on OPT 10
2.5 A 2-approximation for VERTEX-COVER 11
2.6 One last simple example with MAX-SAT 12
2.7 Can our analyses be refined? 14

3 Approximation using the fundamental approach 16
3.1 The Traveler Salesperson Problem, Metric Version 16
3.2 Improvement to a 3/2-approximation 19
3.3 k-center problem . 21

4 Greedy approach and local search 25
4.1 Local search and MAX-CUT 26
4.2 Greedy algorithm for SET-COVER 29

5 Probabilistic algorithms 33
5.1 Basics . 33
5.2 A probabilistic 1/2-approximation for MAX-CUT 34
5.3 A probabilistic 7/8-approximation for MAX-3-SAT 35
5.4 Derandomization . 37

1

CONTENTS 2

6 Polynomial time approximation schemes (and KNAPSACK) 40
6.1 Polynomial Time Approximation Scheme (PTAS) 40
6.2 KNAPSACK Problem . 41
6.3 A PTAS for KNAPSACK . 43

7 Approximation and Linear Programming 46
7.1 LP for approximation . 47
7.2 Relaxation by Integer Linear Programs (ILP) 48

7.2.1 Application to VERTEX-COVER 49
7.3 Packet delivery over a ring network 51
7.4 Randomized Rounding . 54

II Algorithms with parameterized complexity 57

8 Parameterized complexity 58
8.1 Defining an FPT algorithm 59
8.2 The canonical example: VERTEX-COVER 59
8.3 Another example: MAX-CLIQUE 62

9 Branching algorithms 66
9.1 3-HITTING SET . 66
9.2 CLUSTER-EDITING . 68
9.3 More Intelligent Branching 69
9.4 How to solve recurrences? . 71
9.5 An improved 3-HITTING-SET 73
9.6 The consensus sequence . 75

10 Kernelisation 78
10.1 Defining a kernel . 79
10.2 Kernelization of VERTEX-COVER 80
10.3 A trivial kernel for MAX-3-SAT 82
10.4 A kernel for MAX-SAT . 83
10.5 A kernel for EDGE-CLIQUE-COVER 85
10.6 A kernel for VERTEX-COVER based on LPs 87
10.7 Do all FPT problems have a kernel? 88

11 Tree decomposition and treewidth 90
11.1 Dynamic programming on trees 90

11.1.1 Independent set in a tree 91
11.1.2 VERTEX-COVER on a tree 93

CONTENTS 3

11.1.3 Assigning characters in a phylogeny 93
11.2 Tree decomposition and treewidth 94
11.3 Some examples . 95

11.3.1 Tree decomposition of a tree 95
11.3.2 Tree decomposition of a cycle 96
11.3.3 Tree decomposition of a clique 96

11.4 Basic results . 97
11.5 Algorithms on tree decomposition 98
11.6 Maximum independent set . 98
11.7 Nice decompositions . 101
11.8 MAX-INDSET and nice decomposition 102
11.9 MAX-CUT and nice decompositions 103

12 Conclusion 105

Chapter 1

Introduction

As a disclaimer, I must first acknowledge that this English version was 99%
translated from French using automated software. Although current tools
offer unprecedented accuracy, they are still prone to mistakes. I do read the
translation and apply corrections where needed, but please let me know if I
have missed complete nonsense in this document.

In this course, we will discuss techniques to solve difficult algorithmic
problems efficiently. From our point of view, a problem is difficult if there
is no known polynomial time algorithm to solve it. Our goal is to develop
algorithms for these problems that offer theoretical guarantees on the quality
of the solution obtained or on their speed. We will study two approaches:

1. approximation algorithms, which guarantee to always return a solution
within a factor close to optimal;

2. algorithms with parameterized complexity, which guarantee an expo-
nential time, but only with respect to a parameter k which is small in
practice.

For example, the travel salesperson problem is NP-complete, but there
is a polynomial time algorithm that returns a route that is, at worst, twice
the optimal (under the triangle inequality condition). Or, the VERTEX-
COVER problem is NP-complete, but if k is the number of vertices in a
cover, there is an algorithm in O(2k · n) time (VERTEX-COVER is defined
in chapter 2).

In other words, no one knows an efficent solution to solve NP-complete
problems. This does not mean that any heuristic can be implemented, as
these can return completely incorrect solutions on some instances. We want

4

CHAPTER 1. INTRODUCTION 5

to implement algorithms whose performance is demonstrable, whether in
terms of approximation or complexity.

1.1 What is an NP-complete problem?

If a problem is NP-complete, there is no known polynomial time algorithm
that solves it. The formal definition of an NP-complete problem is beyond
the scope of this course. The intuition that will suffice for this course is that
a first NP-complete problem was discovered in the early 1970s. This problem
is called SAT and consists of determining whether a boolean expression can
be satisfied. For example, consider the boolean expression

φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3)

In the SAT problem, we want to know if we can assign the value True or
False to each of the xi so that φ evaluates to True. A solution here would
be x1 = True, x2 = True, x3 = False. This example is easy and has several
solutions, but on larger instances, no one knows a polynomial time algorithm
to decide if it is possible that φ = True. In fact, the best known algorithm
is to test every combination of the values of xi, which takes a time Ω(2n).

In short, no one knows an efficient algorithm for SAT, despite years of
research. It turns out that SAT can be reduced to other problems. For
example, it has been shown that finding a maximum size clique in a graph is
at least as hard as the SAT problem. That is, we can transform a φ instance
of SAT into a G graph such that if we had a O(nc) algorithm that finds the
largest G click, this algorithm could

That is, we can transform a φ instance of SAT into a graph G such that
if we had a O(nc) algorithm that finds the largest clique in G, this algorithm
could determine whether SAT is satisfiable or not. Everything happens in
the transformation of φ into G in order to preserve equivalence.

We invite you to take the course IFT503/IFT711 for more details on this
subject. For our purposes, it is sufficient to know that if a problem is NP-
complete, it probably does not admit a polynomial time algorithm because
such an algorithm would solve SAT, something that the greatest geniuses of
the last decade have not been able to do.

Unless otherwise stated, all problems studied in this course are NP-
complete.

CHAPTER 1. INTRODUCTION 6

1.2 What are the prerequisites for this course

We assume that the common notions in algorithms are known. These include

• knowledge of the main concepts of discrete mathematics, including
sets, sequences, permutations, and associated notations and operators
(∩,∪, |X|, etc.).

• a knowledge of common proof techniques: direct proof, proof by con-
tradiction, proof by induction, proof by counter-example.

• familiarity with the O notation. In particular, it will be useful to be
able to quickly evaluate the complexity of an algorithm by only going
through the code structure (loops, recursive calls, ...).

• familiarity with graphs. A graph G = (V,E) is a structure where V is
the set of vertices and E the edges, where E contains pairs of vertices.

• a knowledge of divide-and-conquer algorithms and of the master the-
orem for recurrence analysis. A knowledge of linear homogeneous re-
currences may also help (but we will discuss this further).

• knowledge of dynamic programming. In particular, how to establish a
recurrence that expresses optimality, and how to transpose this recur-
rence into code.

It is important to note that this course is theoretical in nature. Ap-
proximation and parameterized algorithms are now very useful in practice,
and many of the approaches presented are implemented in libraries. In this
course, we will not dwell on practical considerations, or even try to con-
vince ourselves of the applications of the notions presented. The methods
presented are chosen to illustrate the most common techniques, and not to
illustrate the most applicable algorithms.

The objective of this course is to train you to apply these techniques
to new problems — the practical interest of this course does not therefore
lie in the specific algorithms chosen, but rather in the ideas behind these
algorithms that you will be able to apply to future problems that you will
encounter.

Part I

Approximation algorithms

7

Chapter 2

Approximation algorithms

In approximation algorithms, we try to create a polynomial time algo-
rithm that returns a solution that is possibly sub-optimal, but as close to
optimal as possible, in a demonstrable way. Most of the time, we are not
going to worry about the exact complexity of our algorithm — our only
interest is polynomial time, even if it is O(n100).

2.1 Approximating a minimization problem

Let P be a minimization problem, i.e. a problem in which we want to
minimize a certain objective function among a set of feasible solutions. For
an instance X of P , let OPT (X) be the value of an optimal solution for X.

Let A be an algorithm that produces a feasible solution for any instance
of P , and let APP (X) be the value of the solution output by A when given
the input X.

We say that A is a c-approximation if, for any X instance of P ,

APP (X) ≤ c ·OPT (X)

So when c > 1, the algorithm can give a sub-optimal solution, but not
more than c times too big.

8

CHAPTER 2. APPROXIMATION ALGORITHMS 9

2.2 Approximating a maximization problem

If P is a maximization problem, we say that A is a c-approximation if, for
any instance X of P ,

APP (X) ≥ c ·OPT (X)

So when c < 1, the algorithm can give a sub-optimal solution, but not
more than c times too small. Note that in some texts, c ≥1 and APP (X) ≥
1
c · OPT (X) are required. This is so that c >1 in both types of problems.
In this course, we prefer to use c directly and not its inverse.

In the remainder of this document, we will often write OPT instead of
OPT (X) and APP instead of APP (X).

2.3 A first example with 3-SET-COVER

Our first example of approximation will be trivial, but instructive, as it will
allow us to introduce a fundamental technique in approximation. We study
the problem 3-SET-COVER. We are given sets S1, . . . , Sm of size 3, and we
are asked to cover a universe U of size n with a minimum number of sets.

3-SET-COVER
Input: a universe U = {u1, . . . , un} and a collection of sets S =
{S1, . . . , Sm} such that |Si| = 3 for all i ∈ [m]
Output: a subset S∗ ⊆ S of minimum size such that

⋃
Si∈S∗ Si =

U .

It is assumed that each ui ∈ U has a set of S that contains it. Here is
an example instance:

U = {1, 2, 3, 4, 5} S1 = {1, 3, 4}, S2 = {1, 4, 5}, S3 = {2, 3, 5}
An optimal solution: choose S∗ = {S1, S3}

Here, a feasible solution is any S∗ ⊆ S such that the union of the el-
ements of S∗ gives U . The value we want to minimize is |S∗|. Here is a
3-approximation.

CHAPTER 2. APPROXIMATION ALGORITHMS 10

fonction setcover(U, S)
S∗ = {}
for i = 1..n do

Let ui be the i-th element of U
if ui is not covered by S∗ then

Add to S∗ any set that contains ui
end
return S∗

It is clear that this algorithm runs in polynomial time and always returns
a valid solution, i.e. an S∗ subset that covers all the ui. But how do we
know that it is a 3-approximation? Let’s start by asking ourselves what
OPT is worth. Since there are n items to cover and each Si can cover at
most 3 elements, we know that

OPT ≥
⌈n

3

⌉
≥ n

3

But what is APP worth? In the worst case, we add a set to S∗ for each
element of U . So

APP = |S∗| ≤ n

We get

APP ≤ n = 3 · n
3
≤ 3 ·OPT

So, APP ≤ 1/3 ·OPT and that’s a 3-approximation.

2.4 Fundamental technique: finding a bound on OPT

The above example illustrates a very important idea in approximation. To
show that we are not too far from OPT , we find a bound on OPT , a bound
on APP , and we compare them. It’s very simple: we just have to perform
the following two steps

1. find a bound on OPT ;

2. show that APP is not too far from this bound.

If we have a minimization problem, it takes the following form: we show
that OPT ≥ k for a certain k. Then, we show that APP ≤ c · k. These two

CHAPTER 2. APPROXIMATION ALGORITHMS 11

facts give the chain of inequalities

APP ≤ c · k ≤ c ·OPT

and you get a c-aprpoximation.
If we have a maximization problem, we show that OPT ≤ k for a certain

k. Next, we show that APP ≥ c · k, which yields

APP ≥ c · k ≥ c ·OPT

The difficulty with this technique is to find that “middle point” where OPT
and APP meet. We will see several examples during this course.

2.5 A 2-approximation for VERTEX-COVER

Let G = (V,E) a graph. A set X ⊆ V is a vertex cover if, ∀uv ∈ E, we have
u ∈ X or v ∈ X (or both). Put another way, X is “touching” all the edges.

VERTEX-COVER
Input: a graph G = (V,E)
Output: vertex cover X ⊆ V of minimum size

To approximate this problem, we observe that for each edge uv ∈ E,
we must include either u or v in the X solution. Not knowing which one
to include, our approximation algorithm includes both. This will have the
effect of covering other edges, all those that are incident to u and v. Our
algorithm iteratively finds uncovered edges and adds its two ends until it
covers the entire E.

fonction vc-matching(G = (V,E))
X = {}
while X does not cover every edge do

Let uv ∈ E be an edge not covered by X
X ← X ∪ {u, v}

end
return X

This algorithm is called vc-matching because the set of edges for which

CHAPTER 2. APPROXIMATION ALGORITHMS 12

the two ends have been added form a matching, i.e. a set of edges that
do not share any vertex. It is possible to show that this algorithm is a
2-approximation. In fact, any algorithm that returns a matching is a 2-
approximation.

Theorem 1. The vc-matching algorithm is a 2-approximation to the VERTEX-
COVER problem.

Proof. Let X∗ be a minimum vertex cover of G and let OPT = |X|. Let
u1v1, u2v2, . . . , ukvk be the edges of G for which the algorithm added the
two vertices, and let X be the cover returned by the algorithm. We observe
that for any i 6= j, {ui, vi}∩{uj , vj} = ∅ (this is because once we add ui and
vi, all edges touching ui and vi are covered — if you don’t see it, take the
time to convince yourself). This means that every ui and vi is a different
vertex.

Now, for any i ∈ [k], X∗ must contain either ui or vi (or both). Since
all ui and vi are distinct, this implies that OPT = |X∗| ≥ k. The cover
returned by vc-cover is X = {u1, v1, u2, v2, . . . , uk, vk}, and thus |X| = 2k.
We get

APP = |X| = 2k ≤ 2|X∗| = 2OPT

and so we have a 2-approximation.

Note again the use of the technique. We first found a bound on OPT,
this time directly linked to the solution returned by the algorithm. We
compared OPT to the size of our solution and obtained a 2-approximation.
Despite its simplicity, we do not know of an algorithm that offers a better
approximation ratio. A well-known conjecture states that if NP-complete
problems do not have an algorithm in polynomial time, then it is impossible
to do better than this algorithm in terms of approximation.

Note that we passed a bit quickly on the statement {ui, vi} ∩ {uj , vj} =
∅. This would not have been tolerated in a 1st or 2nd year course, but
we allow ourselves a few such jumps, given the advanced nature of the
course. When writing your own proofs, it is important to ask yourself if
such jumps are appropriate — they often lead to erroneous proofs (even
reputable researchers fall into these traps). When in doubt, detail!

2.6 One last simple example with MAX-SAT

In the world of Boolean expressions, a clause is a set of boolean variables
linked by logical ”or”. A boolean variable xi can be positive (xi) or nega-
tive (xi).

CHAPTER 2. APPROXIMATION ALGORITHMS 13

For example, here is a clause C involving three variables:

C = x1 ∨ x2 ∨ x3

An assignment assigns the value True or False to each variable. If
xi = True, all positive occurrences of xi evaluate to True and negative
occurrences to False. If xi = False, all negative occurrences of xi evaluate
to True and positive occurrences to False. For example, if we take the
assignment x1 = True, x2 = False, x3 = False, the above clause results in

C = True ∨ True ∨ False

which evaluates to True.
A clause is satisfied by an assignment A if the clause evaluates to True

with this assignment. For this to occur, at least one variable in the clause
must value True. The only way not to satisfy the above clause is x1 =
False, x2 = True, x3 = False.

In the MAX-SAT problem, we receive a set of clauses (with an arbitrary
number of variables), and we want to find an assignment that maximizes
the number of satisfied clauses.

MAX-SAT
Input: a set of clauses C1, . . . , Cm on boolean variables x1, . . . , xn
Output: an assignment A that satisfies the maximum number of
clauses among C1, . . . , Cm.

Here is a 1
2 -approximation.

fonction msat(C1, . . . , Cm on variables x1, . . . , xn)
Let A be the assignment with
x1 = True, x2 = True, . . . , xn = True

if A satisfies at least m/2 clauses then
return A

Let A be the assignment with
x1 = False, x2 = False, . . . , xn = False

return A

CHAPTER 2. APPROXIMATION ALGORITHMS 14

Theorem 2. The msat algorithm is a 1
2 -approximation.

Proof. There are m clauses, so trivially, OPT ≤ m (our bound on OPT).
If the algorithm returns A, then APP ≥ m/2 and we have

APP ≥ m/2 ≥ OPT/2

Otherwise, assume that A satisfies k < m/2 clauses. Note that any
clause not satisfied by A has the form Ci = (xa∨xb∨xc). Such a clause will
be satisfied by A. Therefore, A satisfies at least m − k > m −m/2 = m/2
clauses. We deduce that if the algorithm returns A, we still have APP ≥
m/2 ≥ OPT/2.

So we have a 1
2 -approximation.

2.7 Can our analyses be refined?

The approximation ratios obtained depend on our ability to demonstrate
them. We can then ask ourselves whether, with more refined analyses, we
could show that our algorithms are better than we think. For example,
perhaps msat above is in fact a 5

6 approximation, but we are unable to
demonstrate it.

When we produce an algorithm and a proof of approximation, we like to
argue that our analysis is tight, i.e. that we could not improve the demon-
strated approximation ratio. To do so, we just have to give an example in-
stance in which our algorithm reaches exactly the demonstrated ratio. One
instance is enough, but we usually need to provide a family of instances.

Let’s take the algorithm again for 3-SET-COVER.

fonction setcover(U, S)
S∗ = {}
for i = 1..n do

Let ui be the i-th element of U
if ui is not covered by S∗ then

Add to S∗ any set that contains ui
end
return S∗

Is it possible that this algorithm does better than a 3-approximation?
No, because there are some instances where this algorithm gives APP =

CHAPTER 2. APPROXIMATION ALGORITHMS 15

3 · OPT . Or more precisely, we will build a family of instances such that
APP = (3−ε)OPT , with ε tending towards 0 when n tends towards infinity.
The following theorem formulates this in an alternative way.

Theorem 3. For any ε >0, there is an instance of 3-SET-COVER such as
APP ≥ (3− ε)OPT .

Proof. Let U = {u1, . . . , un}, where n is a multiple of 3. Let the sets S
contain

S1 = {u1, u2, u3}
S2 = {u1, u2, u4}
. . .

Sn−2 = {u1, u2, un}
S′2 = {u4, u5, u6}
S′3 = {u7, u8, u9}
. . .

S′n/3 = {un−2, un−1, un}

Since the algorithm does not specify how to choose the set to cover a
new element, we can assume that it makes the worst possible choice. We
can be convinced that the algorithm could return S∗ = {S1, S2, . . . , Sn−2}
of size n− 2. However, the optimal solution is {S1, S

′
2, S
′
3, . . . , S

′
n/3} of size

n/3.
If we want to know the approximation ratio, we must find c such that

APP = c ·OPT , i.e. the c such that n− 2 = c · (n/3). We find c = 3− 6/n.

APP = n− 2 = (3− 6/n)OPT

By making n tend towards infinity, we obtain the result.

Chapter 3

Approximation using the
fundamental approach

In this chapter, we will see various examples of applications of the funda-
mental technique. As we will see, we sometimes have to be creative in our
choice of bounds on OPT and APP .

3.1 The Traveler Salesperson Problem, Metric Version

Let G = (V,E) a complete graph, i.e. every possible edge is present (and
thus |E| =

(
n
2

)
= n(n − 1)/2). Let f : E → R>0 a function that assigns a

positive weight to each edge. We say that f satisfies the triangle inequality
if, for any triplet u, v, w of distinct vertices, we have

f(uw) ≤ f(uv) + f(vw)

We will also say that f is a metric. The triangle inequality is a condi-
tion often applicable in practice, and greatly facilitates the development of
approximation algorithms.

A cycle C = (v1, v2, . . . , vn, v1) of G is Hamiltonian if C traverses each
vertex of V exactly once and then returns to v1. The weight of C, denoted
f(C), is equal to the sum of the edge weights of C, i.e.

f(C) = f(vnv1) +
n−1∑
i=1

f(vivi+1)

In the problem of the traveling salesperson, one seeks to visit each city

16

CHAPTER 3. APPROXIMATION USING THE FUNDAMENTAL APPROACH17

and return home in a way that minimizes the sum of the distances traveled.

TRAVELING-SALESPERSON
Input: A complete graph G = (V,E) and a metric f : E → R>0

Output: A Hamiltonian cycle of minimum weight.

At first glance, it is not easy to find a useful bound on OPT. Reflecting
on this, we can see that a Hamiltonian cycle is a sub-graph that must cover
each vertex. We then remember that we know a notion on graphs that aims
to cover each vertex: minimum spanning trees (MST). Remember that a
spanning tree is a G sub-graph which is a tree (therefore connected and
acyclic), which contains all the vertices of G. This spanning tree is an MST
if the sum of the edge weights is minimum among all the possibilities. Prim’s
algorithm or Kruskal’s algorithm can find an MST in polynomial time.

Lemma 1. Let G be an instance of TRAVELLING-SALESPERSON and
let MST (G) the weight of a minimum spanning tree of G. Then OPT (G) ≥
MST (G).

Proof. Let C be a Hamiltonian cycle of G minimum weight. The edge weight
of C is OPT (G). If we remove an edge of C, we get a path that passes
through each vertex once. It is therefore a spanning tree, and therefore the
weight of its edges is at least as large as MST (G) (since MST (G) is the
minimum possible). Let k be the weight of the edges of this path. We have
OPT (G) ≥ k ≥MST (G).

We can therefore try to use an MST as a ”middle point” for our approx-
imation, and thus we want to find a cycle that is not too far from the weight
of an MST. The idea is to find an MST, to take the pre-order traversal order
of this tree. This order will become the visiting order of our cities.

As a reminder, if we have a rooted tree T , the pre-order traversal first
goes to the root, then visits its children recursively.

CHAPTER 3. APPROXIMATION USING THE FUNDAMENTAL APPROACH18

fonction preOrder(T = (V,E), v, list)
//v is the current node
list.append(v)
for w child of v do

preOrder(T,w, list)
end

Our algorithm for TRAVELLING-SALESPERSON is as follows.

fonction approxTSP(G = (V,E), f)
T = getMST (G) // Get a minimum spanning tree

Root T at an arbitrary node r
C = () // empty list

preOrder(T, r, C)
C.append(C.first) // To complete the cycle

return C

We can show that this is a 2-approximation. The idea is that the re-
sulting cycle does a bit like going through each T edge twice, thanks to the
triangular inequality.

Theorem 4. The approxTSP algorithm is a 2-approximation.

Proof. Let k be the weight of an MST T of G, and let C = (v1, . . . , vn, v1)
be the cycle returned by the algorithm. Let f(C) be the weight of the edges
of C. We want to show that f(C) ≤ 2k, because we know that OPT ≥ k.

Let vi, vj be two consecutive vertices in C (so j = i+ 1, or i = n, j = 1).
Let Pi,j be the path from vi to vj in T and let f(Pi,j) be the weight of the
edges of Pi,j . Thanks to the triangular inequality, it is possible show that

f(vivj) ≤ f(Pi,j)

So,

f(C) =
n−1∑
i=1

f(vivi+1) + f(vnv1) ≤
n−1∑
i=1

f(Pi,i+1) + f(Pn,1)

It can be noticed that in a pre-order traversal, the paths go through each
edge twice: once going down, and once going up. So,

∑n−1
i=1 f(Pi,i+1) +

CHAPTER 3. APPROXIMATION USING THE FUNDAMENTAL APPROACH19

f(Pn,1) ≤ 2k. We get

APP = f(C) ≤
n−1∑
i=1

f(Pi,i+1) + f(Pn,1) ≤ 2k ≤ 2OPT

which concludes the proof.

One wonders how the inventor of this algorithm could have thought of it
in the first place. Again, it’s all in the fundamental approach. We start by
asking what could give a bound on OPT. Once the link with MST is made,
we wonder how an MST could give us a cycle. Once this idea is established,
the calculations come naturally.

Note that if we do not have the triangular inequality, there is no c-
approximation, even if c = nk for a constant k, unless P = NP. The conjec-
ture P 6= NP stipulates that NP-complete problems do not admit a poly-
nomial time algorithm, which most researchers believe. Put another way,
don’t look for an approximation algorithm for non-metric TRAVELLING
SALESPERSON.

3.2 Improvement to a 3/2-approximation

We’re going to sketch a 3/2-approximation. This one is not extremely dif-
ficult, but involves Eulerian cycles and perfect matchings, which requires
some additional knowledge.

In a graph, an Eulerian cycle is a cycle C in which the same vertex can
be visited several times, and in which each edge is traversed exactly once. A
classical result of graph theory stipulates the following theorem. The proof
is left as exercise and is easily found online. It is in fact one of the first
results of graph theory, discovered by the famous Euler.

Theorem 5. A G graph has an Eulerian cycle if and only if each vertex
has an even degree.

Remember that the degree of a vertex is its number of neighbors. The
link with the Hamiltonian cycles is the following, also left in exercise.

Lemma 2. Let G = (V,E) and f a metric on the edges. Let C be an
Eulerian cycle of G. Then there is a Hamiltonian cycle C ′ with a weight
equal to or less than that of C.

The idea of the proof is to take the order of the C vertices according to
their first appearance. If C contains the sequence vi, vi+1, . . . , vi+k and that

CHAPTER 3. APPROXIMATION USING THE FUNDAMENTAL APPROACH20

in C ′, it becomes vi, vi+k because vi+1, . . . , vj−1 have already been visited,

we use the triangular inequality to argue that f(vivi+k) ≤
∑i+k−1

j=i f(vjvj+1).
In the end, we end up with the same weight as C.

So, if our MST T had each vertex with an even number of neighbors, it
would be Eulerian and we could transform it into a Hamiltonian cycle with
the same weight, giving a 1 approximation! Of course, a tree has leaves, and
those leaves have 1 neighbor, an odd number. The idea is to add to T a few
edges at odd degree vertices so that it becomes Eulerian.

Let X be the odd degree vertices of T . It is possible to demonstrate that
|X| is even (also an exercise: the number of odd vertices of a graph is always
even). We will add a set of edges M to T in order to increase the degree of
each vertex of X by 1. This way, T with M will be Eulerian. To do this,
we will take a perfect matching in X. That is, we partition X into exactly
|X|/2 pairs so as to minimize the weight of the edges between the chosen
pairs. Remarkably, this can be done in polynomial time. The chosen pairs
correspond to a M set of |X|/2 edges. The interest of this perfect matching
is the following.

Lemma 3. Let M be a perfect matching between the elements of X ⊆ V (G)
in G, with |X| even. Then OPT (G) ≥ 2f(M).

The idea of the proof is that since f is a metric, OPT (G[X]) ≤ OPT (G),
where G[X] is the graph induced by X. Moreover, OPT (G[X]) is the weight
of a cycle consisting of the union of two perfect matchings.

Our algorithm constructs an MST T , finds a perfect matching M be-
tween odd vertices, then adds the M edges to T to get an Eulerian graph.
From this, an Hamiltonian cycle can be obtained.

fonction approxTSP2(G = (V,E), f)
T = getMST (G)
Let X be the odd degree vertices of T
Let M be a minimum perfect matching of the elements of X
Let T ′ = (V (T), E(T) ∪M)
Let C ′ be an Eulerian cycle of T ′

Let C be a Hamiltonian cycle of G obtained from C ′

return C

Theorem 6. approxTSP2 is a 3/2-approximation.

CHAPTER 3. APPROXIMATION USING THE FUNDAMENTAL APPROACH21

Proof. The weight of C returned by the algorithm is f(T) + f(M). We
obtain APP = f(T) + f(M) ≤ OPT +OPT/2 = 3/2 ·OPT .

3.3 k-center problem

In the k-centers problem, one receives a set of points P = (p1, . . . , pn) in
d-dimensions (so pi = (u1, u2, . . . , ud)). Our goal is to find the k locations
among the P points that are the most “centralized”. To determine this, we
have a metric dist between each pair of points, i.e. dist(pi, pj) is a numerical
value such that for any pi, pj , pk, we have

dist(pi, pk) ≤ dist(pi, pj) + dist(pj , pk)

A classic example of a metric is the Euclidean distance, where the dis-
tance between two points p = (u1, . . . , ud) and q = (v1, . . . , vd) is dist(p, q) =√∑d

h=1(ui − vi)2. However, our algorithm works on any metric.
Our goal is to choose k centers in order to minimize the longest distance

to travel to one of these centers.
To formalize the problem, let’s say P ′ ⊆ P and p ∈ P . We define

dcentre(p, P ′) = min
p′∈P ′

(dist(p, p′))

If we interpret P ’ as a list of centers, this represents the distance to the
nearest center.

Our problem is as follows.

k-CENTERS
Input: points P , integer k, metric dist
Output: P ′ ⊆ P such that |P ′| = k which minimizes
maxp∈P (dcentre(p, P ′))

First, we observe that our optimization criterion concerns a distance
between two points (a point p and a center). Therefore, there are p, q ∈ P
such that OPT = dist(p, q). There are

(|P |
2

)
∈ O(|P |2) possible distances,

one for each pair of points. Let

d1, d2, . . . , dm

CHAPTER 3. APPROXIMATION USING THE FUNDAMENTAL APPROACH22

the list of possible distances sorted in ascending order, where m =
(|P |

2

)
.

First we ask ourselves whether OPT = d1. If yes, so much the better,
otherwise, we wonder if OPT = d2, then if OPT = d3, and so on. To answer
these questions, we will use auxiliary graphs. For di ∈ {d1, d2, . . . , dm}, we
define

G[di] = (P, {p1p2 : dist(p1, p2) ≤ di})

as the graph whose vertices are the points P , and we add an edge between
two points if the distance does not exceed di.

It turns out that determining whether P admits k centers with a distance
not exceeding di is equivalent to finding an dominating set with k vertices
in G[di]. Recall that in a graph G = (V,E), a set X ⊆ V is dominating if
∀v ∈ V \X, v has at least one neighbor in X. Put another way, X dominates
everything outside X.

The equivalence between centers and dominating sets can be demon-
strated as follows.

Lemma 4. Let P ′ ⊆ P be a set of k centers. Then maxp∈P (dcentre(p, P ′)) ≤
di if and only if P ′ is a dominating set in G[di].

Proof. Recall that to demonstrate an “if and only if”, two directions must
be proven, one for each side of the involvement.
(⇒): we prove that if maxp∈P (dcentre(p, P ′)) ≤ di, then P ′ is a dominating
set of G[di].

Let p ∈ P \ P ′. We know that p is at most distance di away from its
center p′ ∈ P ′. By the definition of G[di], this means that there is an edge
between p and p′. So p is dominated by an element of P ′. Since this is true
for any p ∈ P \ P ′, P ′ is a dominating set of G[di].

(⇐): we prove that if P ′ is a dominating set of G[di], then any p point is at
most di away from a P ′ point.

If p ∈ P ′, then p is a center and we don’t have to consider it. Otherwise,
we know that in G[di], p has a neighbor p′ in P ′ that dominates it. By the
definition of G[di], dist(p, p

′) ≤ di, which implies that dcentre(p, P ′) ≤ di.
So any point is at most di away from a center.

A consequence of the previous lemma is that OPT is equal to the small-
est di such that G[di] contains a dominating set of size k. A strategy would
therefore be to iterate through the graphs G[d1], G[d2], . . . , G[dm] and, for
each of them, check whether it admits a dominating set of size k. Unfortu-
nately, there is no known polynomial time algorithm to answer this question

CHAPTER 3. APPROXIMATION USING THE FUNDAMENTAL APPROACH23

(otherwise, we might have an optimal algorithm). We will therefore con-
sider each G[di] from the smallest to the largest, and try to find a possibly
sub-optimal dominating set in a greedy way.

Let’s first consider a simple algorithm to find a dominating set.

fonction getDomSet(G = (V,E))
X = {}
while |V | > 0 do

Choose u ∈ V arbitrarily; Add u to X; Remove from G the
top v and all its neighbors;

end
return X

This returns a dominating set because every time we add a vertex, its
neighbors become dominated. On the other hand, it is not necessarily an
optimal dominating set. We can still use this subroutine for our approxima-
tion.

fonction kCentres(P, k, dist)
D = {} // Distances

for each pair of vertices p, q ∈ P do
D.append(dist(p, q))

end
Sort D = {d1, d2, . . . , dm} in ascending order
for i = 1 to m do

Build G[di]
P ′ = getDomSet(G[di])
if |P ′| ≤ k then

return P ′

end

end

Note that we stop at the first G[di] that admits a dominant set P ′ such
that |P ′| ≤ k, and not such that |P ′| = k. We leave it up to you to think
about this technicality.

Theorem 7. kCentres is a 2-approximation.

Proof. Let di = OPT . To prove the theorem, we hope that the algorithm

CHAPTER 3. APPROXIMATION USING THE FUNDAMENTAL APPROACH24

finds a dominating set in a G[dj] such that dj ≤ 2ḋi. To simplify, we will
assume that G[2di] is constructed (in reality, we should take the highest dj
which is less than 2di).

We know that G[di] admits a dominating set P ′ = {p′1, p′2, . . . , p′k} of
size k. The centers of P ′ determine groups, called clusters. That is, for any
p ∈ P , we say that p chooses the center p′ ∈ P ′ if p′ is the closest choice to
p. For each j ∈ {1, 2, . . . , k}, we define the cluster

Cj = {p ∈ P : p chooses the center p′j }

Therefore, all the points in the same Cj are at a distance of at most di from
p′j . By the triangular inequality, if p, q ∈ Ch, then

dist(p, q) ≤ dist(p, p′j) + dist(p′j , q) ≤ 2di

A consequence of this is that in G[2di], all the points of a single cluster
are neighbors to each other. This means that the algorithm getDomSet,
when receiving G[2di] will first choose a u ∈ V belonging to a certain cluster
Cj , then remove all points of Cj . At the 2nd iteration, it will remove all
the points from another cluster, and so on. Since there are k clusters,
getDomSet will return a set with at most k vertices.

We deduce that the algorithm returns a dominant set of G[2di], which
implies that APP ≤ 2di = 2OPT .

Chapter 4

Greedy approach and local
search

In the previous chapter, we studied an approach that first finds a bound
on OPT , and then develops an algorithm with respect to the bound found.
This works well when possible, but unfortunately it is not always obvious
how to apply it. Another way is to first create an algorithm, and then find
the bound on OPT relative to that algorithm. This approach often fails
to find a good approximation factor. On the other hand, when it works,
the resulting algorithm is often simple to implement, even if the analysis is
sometimes difficult.

In an optimization problem, two types of algorithms often come natu-
rally:

• the greedy approach. We start with an empty solution and find the
element to be added that is “the most promising”. We add it, update
our instance and repeat.

It’s greedy because at each step, we take the choice that seems better
now without worrying about the future.

• the local improvement approach. We start with a solution of some
kind, then we try to see if we can make a small local modification to
improve it. If so, we do it and repeat. If not, we return this solution.

Of course, this tends to fall into local min/max, but sometimes gives
approximations with good theoretical guarantees.

In this chapter we will see an example of each approach with SET-
COVER and MAX-CUT.

25

CHAPTER 4. GREEDY APPROACH AND LOCAL SEARCH 26

4.1 Local search and MAX-CUT

Let G = (V,E) be a graph. A bipartition of G is a separation of the vertices
into two non-empty parts. More specifically, a bipartition is a pair of sets
(V1, V2) such that V1 ∪ V2 = V with V1 6= ∅, V2 6= ∅ and V1 ∩ V2 = ∅. A
bipartition is sometimes called a cut.

The edges of a bipartition (V1, V2) are denoted E(V1, V2) and correspond
to the edges that cross on both sides of the bipartition. In other words,

E(V1, V2) = {uv ∈ E : u ∈ V1, v ∈ V2}

In the MAX-CUT problem, we are looking for a bipartition that maxi-
mizes crossing edges.

MAX-CUT
Input: a graph G = (V,E).
Output: a bipartition (V1, V2) that maximizes |E(V1, V2)|.

In the spirit of local search, we will start with an arbitrary bipartition
and move a vertex if it allows to increase the cut.

CHAPTER 4. GREEDY APPROACH AND LOCAL SEARCH 27

fonction maxCutLocal(G = (V,E))
Let u be any vertex of V
V1 = {u}
V2 = V \ {u}
finished = False
while not finished do

finished = True
for v ∈ V1 do

if |E(V1 \ {v}, V2 ∪ {v})| > |E(V1, V2)| then
V1.remove(v)
V2.insert(v)
finished = False

end

end
for v ∈ V2 do

if |E(V1 ∪ {v}, V2 \ {v})| > |E(V1, V2)| then
V1.insert(v)
V2.remove(v)
finished = False

end

end

end
return (V1, V2)

A first question concerns the time required by this algorithm. Is it
possible that it loops infinitely? It cannot be excluded that the algorithm
cycles through a series of movements without ever ending. A first element
to demonstrate with this type of algorithm is not only that it finishes, but
also that it finishes in polynomial time. This is often complex, but in our
example, a simple proof is enough.

Lemma 5. The maxCutLocal algorithm ends after O(n2) iterations of the
main loop.

Proof. Let (V1, V2) be the bipartition in memory at the beginning of an
iteration of the loop, and let (V ′1 , V

′
2) the bipartition at the end of the same

iteration. If finished = False, at least one movement has been made that
increases the number of edges that cross. This implies that E(V ′1 , V

′
2) >

E(V1, V2). So the value of the cut increases by at least 1 with each loop

CHAPTER 4. GREEDY APPROACH AND LOCAL SEARCH 28

pass. Since the number of edges of a bipartition is at most
(
n
2

)
∈ O(n2), the

maximum number of times we can increase the value of the cut is O(n2).

This implies that the algorithm takes a polynomial time since an it-
eration of the loop can be done in time O(n2). Let us now focus on the
performance of maxCutLocal in terms of approximation. Note that this
algorithm was developed independently at any bound on OPT . This com-
plicates the analysis, as we are now constrained to bound OPT according
to the algorithm (whereas in the previous chapter we were free to set OPT
without constraints). It is therefore difficult to describe a general analy-
sis technique for this type of algorithm — it seems that every gluttonous
algorithm requires an ad hoc analysis.

For a vertex v ∈ V , we denote by N(v) the set of neighbors of v in G.

Lemma 6. Let (V1, V2) be the solution returned by maxCutLocal. For any
v ∈ V1, v has at least half of its neighbors in V2, i.e.

|N(v) ∩ V2| ≥ |N(v)|/2

In addition, for any v ∈ V2, |N(v) ∩ V1| ≥ |N(v)|/2.

Proof. We prove for v ∈ V1 only. The case v ∈ V2 is identical.
Suppose for the sake of contradiction that there exists v ∈ V1 such that v

has strictly less than |N(v)|/2 neighbors in V2. Then v has strictly more than
|N(v)|/2 neighbors in V1. The contribution of v to E(V1, V2) is smaller than
|N(v)|/2. If we transfer v into V2, the number of edges of the bipartition is
changed by an amoutn of

|N(v) ∩ V1| − |N(v) ∩ V2|

because we gain the edges of v towards V1, but we lose the edges of v towards
V2. This difference is strictly greater than 0. So the transfer of v increases
the cut. This is a contradiction, because the algorithm would then have
made this transfer.

So the intuition is that each vertex has half of the neighbors on the other
side. In the best of worlds, each vertex would have all its neighbors on the
other side, which forms our bound on OPT and gives our 1/2 approximation.

Theorem 8. maxCutLocal is a 1/2 approximation.

Proof. Note that the number of edges in a bipartition is equal to the sum,
over all vertices, of the number of neighbors crossing, divided by 2 because

CHAPTER 4. GREEDY APPROACH AND LOCAL SEARCH 29

each edge is counted twice. That is to say, for any bipartition (V ′1 , V
′

2), we
have

|E(V ′1 , V
′

2)| = 1

2

∑
v∈V ′1

|N(v) ∩ V ′2 |+
∑
v∈V ′2

|N(v) ∩ V ′1 |

In the best possible case, each intersection contain all neighbors. Therefore,

OPT ≤ 1

2
·
∑
v∈V
|N(v)|

In the case of the maxCutLocal algorithm, we know that each intersection
contains at least half of the neighborhoods.

APP ≥ 1

2
·
∑
v∈V

|N(v)|
2

=
1

2
· 1

2

∑
v∈V
|N(v)|

≥ 1

2
·OPT

4.2 Greedy algorithm for SET-COVER

It turns out that the greedy strategy works well for SET-COVER, in which
each set has an arbitrary number of elements. The goal is to cover a universe
U with a minimum number of sets.

SET-COVER
Input: universe U = {u1, . . . , un}, sets S = {S1, . . . , Sm}
Output: sets S∗ ⊆ S that cover U and minimize |S∗|.

For precision, we say that S∗ ⊆ S covers U if
⋃

S′∈S∗ S
′ = U . As an

exercise, we will also ask to study the version in which each Si ∈ S has
a different cost, and we try to minimize the total cost of S∗ instead of its
number of elements.

A very intuitive idea is to start with S∗ = {} and then add the set
Si ∈ S that covers a maximum number of elements. Then add the next set
that covers a maximum of remaining elements, and so on. This gives the
following algorithm.

CHAPTER 4. GREEDY APPROACH AND LOCAL SEARCH 30

fonction setCoverGreedy(U = {u1, . . . , un}, S = {S1, . . . , Sm})
R = U //Elements remaining to be covered
while R 6= ∅ do

Let Si ∈ S that maximizes |Si ∩R| // greedy choice

S∗.append(Si)
R = R \ Si

end
return S∗

As in MAX-CUT, this algorithm was not developed with a bound on
OPT in mind, again requiring an ad hoc analysis.

For the setCoverGreedy algorithm, we can look at the “cost” of covering
each uk ∈ U . We will rely on the following intuition. If it took a whole set
to cover only one uk and no other items, then uk was expensive (it took a
set just for itself). But if uk was covered by adding a Sj , and Sj also covered
99 of other new U items, then the cost of uk is much less because the cost
of covering uk was spread over 100 elements.

More rigorously, we say that each Si ∈ S has a cost of 1. Hence the cost
of a solution S∗ is equal to |S∗|. The moment a Si set is added to S∗ by
the algorithm, it distributes its 1 cost to all new covered elements. That is,
when Si is added to S∗, each element uk ∈ Si ∩R is assigned the cost

cost(uk) =
1

|Si ∩R|

where, again, R is the set of elements remaining to be covered at the mo-
ment when Si is added to S∗. The cost of each uk is therefore dependent
on how many other elements were covered at the same time as it.

The interest of this distribution of costs is that it gives us another way
of measuring APP = |S∗|.

Lemma 7. Let S∗ be the set returned by setCoverGreedy. Then

n∑
k=1

cost(uk) = |S∗|

Proof. Each time we add a Si to S∗, we distribute a total of 1 across
the elements of Si ∩ R. Since each element uk receives a cost only once,
each Si ∈ S∗ contributes exactly 1 to the sum of the costs, which explains

CHAPTER 4. GREEDY APPROACH AND LOCAL SEARCH 31

∑n
k=1 cost(uk) = |S∗|.

Now, the cost(uk) will serve as a “middle point” between OPT and
APP . We still have to establish a link between OPT and these costs. In
the algorithm, more and more items are covered. We can therefore order
U so that u1 is the element covered first, u2 is covered second, and so on.
(several elements could be covered in the same iteration, in which case an
arbitrary order is determined).

So we assume that u1, u2, . . . , un gives us the order in which the elements
of U are covered. Let’s take any uk.

Lemma 8. For every k ∈ {1, 2, . . . , n}, we have

OPT/(n− k + 1) ≥ cost(uk)

Proof. Just before uk becomes covered, |R| = n− k + 1 items remain to be
covered. We know that the optimal solution is able to cover these n− k+ 1
elements of R with OPT sets (because OPT sets can cover all the elements).
So, necessarily, there is a set Si ∈ S∗ such that Si contains (n−k+1)/OPT
elements of R (because otherwise it is impossible to cover R with OPT sets).

Since the algorithm maximizes |Si ∩ R|, it will therefore choose to add
to S∗ a Si set such that |Si ∩R| ≥ (n− k + 1)/OPT . This gives

OPT/(n− k + 1) ≥ 1/|Si ∩R|

Remember that this Si contains uk because we are at the point just before
uk is covered. This concludes the proof, because 1/|Si ∩R| = cost(uk).

We now have everything we need to compareAPP = |S∗| =
∑n

k=1 cost(uk)
and OPT . We will find ourselves with what is called the harmonic series
denoted Hn. More precisely, we define

Hn = 1 +
1

2
+

1

3
+ . . .+

1

n

It turns out that our algorithm is a Hn-approximation.

Theorem 9. setCoverGreedy is a Hn-approximation.

CHAPTER 4. GREEDY APPROACH AND LOCAL SEARCH 32

Proof. We know that

APP =
n∑

k=1

cost(uk) ≤
n∑

k=1

OPT/(n− k + 1)

= OPT ·
n∑

k=1

1/(n− k + 1)

= OPT ·
(

1 +
1

2
+

1

3
+ . . .+

1

n

)
= Hn ·OPT

which concludes the proof.

It is possible to demonstrate that Hn ∈ O(log n). It is therefore often
said that setCoverGreedy is a O(log n)-approximation. It turns out that if
P 6= NP, there is no better algorithm, i.e. there is no f(n)-approximation
for any f(n) ∈ o(log n) (where the notation o refers to functions that grow
strictly slower than log n).

Chapter 5

Probabilistic algorithms

We will see in this chapter some examples of algorithms that can make ran-
dom choices. These algorithms do not always return the same solution and
its quality may vary according to chance. However, in many cases, these al-
gorithms can give a reasonable approximation factor in expectation. We will
then see that it is sometimes possible to derandomize some probabilistic al-
gorithms and make them completely deterministic with the same theoretical
guarantees.

5.1 Basics

For our purposes, a probabilistic algorithm runs in polynomial time if it al-
ways returns a solution in polynomial time, regardless of its random choices.
This differs from some analyses that require polynomial time in expectation
only. Let A be an approximation algorithm. To define the expectation of
the value, we note that the value APP (A) of the solution returned by A is
a random variable. For a numerical value K, we write

Pr[APP (A) = K]

to denote the probability that A returns a solution of value K. It is assumed
that the possible values of K form a countable set.

The expectation of the APP value of A is denoted by

E[APP (A)] =
∑
K

Pr[APP (A) = K] ·K

where the sum applies to all possible values of APP . The notion of proba-

33

CHAPTER 5. PROBABILISTIC ALGORITHMS 34

bilistic c-approximation is defined as follows:

• if A solves a minimization problem, A is a c-approximation if
E[APP (A)] ≤ c ·OPT ;

• if A solves a maximization problem, A is a c-approximation if
E[APP (A)] ≥ c ·OPT .

Note that most of the time, we will not calculate the expectation directly
in the above way and will use a few tricks to simplify our calculations. One of
the most important is the linearity of expectation, well known in probability
and statistics.

Theorem 10. Let X1, X2, . . . , Xn be random variables. Then

E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi]

5.2 A probabilistic 1/2-approximation for MAX-CUT

One of the simplest examples of probabilistic approximation is for MAX-
CUT. Tto construct a bipartition (V1, V2), we will simply put each vertex in
one of the two sides randomly, each with probability 1/2.

fonction maxCutProba(G = (V,E))
V1 = ∅
V2 = ∅
for v ∈ V do

res = flipCoin()
if res = tails then

V1.append(v)
else

V2.append(v)
end

end
return (V1, V2)

Despite the simplicity of this algorithm, half of the edges will end up in
the cut on average, because each edge has a 50/50 chance of having its ends
separated. We formalize this idea below.

CHAPTER 5. PROBABILISTIC ALGORITHMS 35

Theorem 11. The maxCutProba algorithm is a 1/2 probabilistic approxi-
mation.

Proof. In this problem, APP is the number of separated uv edges in (V1, V2).
For uv ∈ E, we define the random variable

1uv =

{
1 if u ∈ V1 and v ∈ V2, or if u ∈ V2 and v ∈ V1

0 otherwise

We have APP =
∑

uv∈E 1uv. The expectation of APP is therefore

E[APP] = E[
∑
uv∈E

1uv] =
∑
uv∈E

E[1uv]

Here, 1uv is the probability that u and v will be separated in a solution. It
can be argued that 1uv = 1/2, because there are 4 equiprobable combina-
tions of possible locations for u and v, and 2 of these cases separate u and
v. Therefore,

E[APP] =
∑
uv∈E

E[1uv] =
∑
uv∈E

1/2 = |E|/2

Since OPT ≤ |E|, we get E[APP] = |E|/2 ≥ OPT/2.

Note that this algorithm also works for the MAX-CUT version with
weights, because each weight has a 50/50 chance of ending up in the cut.
The advantage of this algorithm is that it is easy to implement and is very
fast. In practice, a common technique with this type of algorithm is to run
it several times and keep the best solution.

5.3 A probabilistic 7/8-approximation for MAX-3-SAT

MAX-3-SAT is the variant of MAX-SAT in which each clause has exactly 3
variables.

MAX-3-SAT
Input: a set of clauses C1, . . . , Cm with 3 variables each, on vari-
ables x1, . . . , xn;
Output: an assignment of the xi variables that maximizes the
number of satisfied clauses.

CHAPTER 5. PROBABILISTIC ALGORITHMS 36

There is a very simple algorithm for this problem: choose an assignment
at random.

fonction max3satProba(C1, . . . , Cm on variables x1, . . . , xn)
A = empty assignment
for i = 1..n do

res = flipCoin()
if res = tails then

Assign xi = True in A
else

Assign xi = False in A

end
return A

Consider a Ci clause, for example Ci = (xi ∨ xj ∨ xk). The only way
to not satisfy Ci is that all of its variables evaluate to false. There are
8 combinations of assignments for the 3 variables of Ci, and 7 of these
combinations satisfy Ci. Since each combination is chosen with the same
probability, there is therefore a 7/8 probability of satisfying Ci. Since this
is true for each clause, by the linearity of expectation, we expect that a 7/8
proportion of the clauses will be satisfied.

The following theorem follows. The proof only formalizes the above
paragraph.

Theorem 12. The max3satProba algorithm is a probabilistic 7/8-approximation.

Proof. Let A be the assignment returned by the algorithm. For a Ci clause,
let us define

1Ci =

{
1 if A satisfies Ci

0 otherwise

We get

E[APP] = E[

m∑
i=1

1Ci] =

m∑
i=1

E[1Ci] =

m∑
i=1

7/8 = 7m/8

We know that OPT ≤ m, and therefore APP[E] = 7m/8 ≥ 7/8 · OPT .

CHAPTER 5. PROBABILISTIC ALGORITHMS 37

5.4 Derandomization

Purists will say that a probabilistic c-approximation is not appropriate, be-
cause it could be that, by some misfortune, APP is very far from OPT .
What is the purpose of providing theoretical guarantees if they are only
guaranteed with a certain probability? A first answer is that it is possible
to show that if we execute the same algorithm several times and keep the
best solution, the probability of moving away from the expectation decreases
exponentially. If this interests you, search for “Chernoff bound”.

Another answer is that sometimes the effect of chance can be eliminated
by transforming the probabilistic algorithm into a deterministic algorithm
while maintaining the same guarantees of approximation. This is called
derandomization.

The idea is first to compute the expectation of a given instance, a bit like
in MAX-CUT or MAX-3-SAT analysis. We try to add an element to our
solution and calculate the effect of setting this choice on the expectation. If
it has not worsened, we fix the choice. If it has worsened, we do not make
this choice and move on to the next one. If each of the choices maintains the
hope that we originally had, we will have fixed a set of deterministic choices
that gives a solution that reaches the original hope.

Derandomization of MAX-3-SAT

As an example, let’s take a look at the “derandomized” version of MAX-
3-SAT. Let Aj be an assignment of the variables x1, x2, . . . , xj . This is a
partial assignment, because Aj assigns the value of some variables, but not
all (except if j = n). The idea is that some clauses are already satisfied by
Aj , some will never be, and some may be.

We assume that we set Aj and assign xj+1, . . . , xn randomly. The prob-
ability of satisfying a clause Ci given Aj can be expressed as follows:

Pr[Ci is satisfied |Aj] =

1 if Aj already satisfies Ci

1− 1
2k

otherwise, where k is the number of variables

from Ci not assigned by Aj

For example, suppose that according to A2, we have x1 = true and
x2 = false. Let Ci = (x1 ∨ x3 ∨ x4). So knowing that A2 affects x1 = true,
we know that we are not going to satisfy C1 with x1. This leaves 2 variables
capable of satisfying Ci with probability 1 − 1/4 = 3/4. This corresponds
to 3 chances out of 4 to satisfy Ci with x3 or x4.

CHAPTER 5. PROBABILISTIC ALGORITHMS 38

We can argue that the expectation of APP given Aj is

E[APP |Aj] =
m∑
i=1

Pr[Ci is satisfied |Aj]

The idea of the derandomization is to start with an empty A0 assignment.
As seen above, E[APP] = E[APP |A0] = 7m/8. We will try to assign x1 =
true in a temporary assignment A+

1 and calculate E[APP |A+
1]. We then try

to assign x1 = false in an assignation A−1 and calculate E[APP |A−1]. We
choose Aj to be the choice with maximum expected value.

fonction max3satDerand(C1, . . . , Cm on variables x1, . . . , xn)
A0 = empty assignment
for j = 1..n do

A+
j = copy of Aj−1 with xj = true

E+
j = E[APP |A+

j] =
∑m

i=1 Pr[Ci is satisfied |A+
j]

A−j = copy of Aj−1 with xj = false

E−j = E[APP |A−j] =
∑m

i=1 Pr[Ci is satisfied |A−j]

if E+
j ≥ E

−
j then

Aj = A+
j ;

else
Aj = A−j

end

end
return An

Note that even though it does probability calculations, this algorithm is
entirely deterministic. The key idea is that after each loop, we set xj in Aj

such that E[APP |Aj] ≥ 7m/8.

Lemma 9. After the j-th loop of the algorithm, j ∈ {0, 1, . . . , n}, we have
E[APP |Aj] ≥ 7m/8.

Proof. Let j ∈ {0, 1, dots, n}. We show by induction on j that E[APP |Aj] ≥
7m/8.

As a base case, we take j = 0. We have already argued that E[APP |A0] ≥
7m/8 because a priori, each clause has 7/8 chances to be satisfied.

Let us consider j > 0, assuming by induction that E[APP |Aj−1] ≥ 7m/8.
The expectation of Aj−1 had been calculated using the fact that there was

CHAPTER 5. PROBABILISTIC ALGORITHMS 39

a one in two chance of assigning xj = true, and a one in two chance of
assigning xj = false. So we end up with

E[APP |Aj−1] =
m∑
i=1

Pr[Ci is satisfied |Aj−1]

=
m∑
i=1

(
1

2
Pr[Ci is satisfied |A+

j] +
1

2
Pr[Ci is satisfied |A−j]

)
=

1

2
E[APP |A+

j] +
1

2
E[APP |A−j]

=
1

2
E+

j +
1

2
E−j

≥ 7m/8

The last inequality is simply because E[APP |Aj−1] ≥ 7m/8 by induc-
tion. This inequality also implies that one of E+

j or E−j is at least 7m/8.

Since Aj is chosen with respect to max(E+
j , E

−
j), E[APP |Aj] ≥ 7m/8.

Theorem 13. The max3satDerand algorithm is a 7/8 approximation (de-
terministic).

Proof. Let An be the assignment after n loops. So An is returned by the
algorithm and assigns each variable. By the previous lemma, E[APP |An] ≥
7m/8. Note that with An, each clause is satisfied or not, and there is no
more probabilistic choice possible. So E[APP |An] ≥ 7m/8 implies that An

satisfies at least 7m/8 clauses. Since OPT ≤ m, we deduce that we have a
7/8-approximation.

Chapter 6

Polynomial time
approximation schemes (and
KNAPSACK)

What is the ultimate approximation ratio? If we solve a minimization prob-
lem, the best we can hope for an NP-complete problem is

APP ≤ (1 + ε) ·OPT

with very small ε. In the same way, the ideal for a maximization problem is

APP ≥ (1− ε) ·OPT

It turns out that for some problems, it is possible to reach an accuracy
arbitrarily close to 1 (and thus an ε arbitrarily close to 0). To do this, we
give the desired ε to the algorithm, and it manages to guarantee our approx-
imation factor. This is called an polynomial time approximation scheme.

6.1 Polynomial Time Approximation Scheme (PTAS)

.
A PTAS is an approximation algorithm A that receives as input an

instance and a ε parameter, and such that:

• A runs in polynomial time relative to the n size of the instance, where
ε is treated as a constant;

• if A solves a minimization problem, APP ≤ (1 + ε) ·OPT

40

CHAPTER 6. POLYNOMIAL TIME APPROXIMATION SCHEMES (ANDKNAPSACK)41

• if A solves a maximization problem, APP ≥ (1− ε)ȮPT .

The first point specifies that the complexity is independent of ε, it is
common for 1/ε to contribute to the complexity. Some PTAS’s, for example,

are executed in time O(1
εn

2), or in time O(221/εn). This is acceptable if
ε = 1/2, but if ε = 1/n, this has a serious impact on complexity. Other
definitions that consider ε in complexity exist. For example, an FPTAS
requires that complexity is polynomial in n and 1/ε.

Of course, it is not always possible to find a PTAS, or some PTAS have
an absurd complexity and have no practical application. We will give an
example of a PTAS that turns out to be applicable in practice.

6.2 KNAPSACK Problem

In the KNAPSACK problem, we receive the capacityW of a bag and objects,
each having a weight wi and a value vi. The objective is to fill the bag with
a maximum total value without exceeding the capacity. This problem is
called the KNAPSACK.

Let R = {(w1, v1), . . . , (wn, vn)} be a set of objects, where the ob-
ject i has weight wi and value vi. For R′ ⊆ R, we will denote w(R′) =∑

(wi,vi)∈R′ wi and v(R′) =
∑

(wi,vi)∈R′ vi.

KNAPSACK
Input: integer W , objects R = {(w1, v1), . . . , (wn, vn)}.
Output: a subset R′ ⊆ R such that w(R′) ≤ W that maximizes
v(R′).

There is a classic dynamic programming algorithm for KNAPSACK.
Let’s first denote

vmax = max{v1, . . . , vn}

Note that OPT ≤ n ·vmax. We will iterate through each possible profit from
1 to nvmax and ask ourselves if it is possible to reach this profit.

For i ∈ {1, 2, . . . , n} and for p ∈ {1, 2, . . . , n · vmax}, we define a B(i, p)
function as the minimum possible weight allowing to reach a profit p using
only the (w1, v1), . . . , (wi, vi) objects, i.e. the first i objects. Put another
way,

B(i, p) = min{w : ∃R′ ⊆ {(w1, v1), . . . , (wi, vi)} such that w(R′) = w and v(R′) = p

CHAPTER 6. POLYNOMIAL TIME APPROXIMATION SCHEMES (ANDKNAPSACK)42

We look for the maximum value of p such that B(n, p) ≤W , because in
this case, B(n, p) corresponds to a way of choosing objects among all those
in the input that has a p profit and a weight below the capacity.

We have that B(i, 0) = 0 for all i, because we can always have a profit 0
with a weight 0. For the other values, it is possible to argue that

B(i, p) = min

{
B(i− 1, p)

B(i− 1, p− vi) + wi

This is because there are two ways to achieve a profit p. Maybe we don’t
use (wi, vi) and we reach a p profit with the first i−1 items. This can be done
with a weight B(i−1, p). Otherwise, we do use (wi, vi). In this case, we had
a profit p− vi with the first i− 1 elements and we added vi. We also added
a weight of wi to the bag. The weight in this case is B(i − 1, p − vi) + wi.
We just take the minimum of the two.

DontPrintSemicolon fonction
sacados(W, (w1, v1), (w2, v2), . . . , (wn, vn))
B = table of dimension n× nvmax;
Initialize B(i, p) =∞ for all i, p;
B(i, 0) = 0 for all i;
pmax = 0;
for i = 1..n do

for p = 1..nvmax do
B(i, p) = min(B(i− 1, p), B(i− 1, p− vi) + wi);
if B(i, p) ≤W and p > pmax then

pmax = p;
end

end

end
return pmax;

This algorithm returns only the maximum profit instead of a set of con-
crete objects. If we want, we can reconstruct a concrete solution reaching
a pmax profit from the B table, which requires applying dynamic program-
ming backtracking.

CHAPTER 6. POLYNOMIAL TIME APPROXIMATION SCHEMES (ANDKNAPSACK)43

fonction
sacadosBacktrack(W, (w1, v1), (w2, v2), . . . , (wn, vn), B, pmax)
X = ∅
i = n
while i > 0 do

if B(i, pmax) = B(i− 1, pmax− vi) + wi then
X.append((wi, vi))

i−−
end
return X

The complexity of the algorithm is O(n2vmax), whether we compute
pmax only or a concrete solution X. This is not necessarily polynomial.
For example, it is possible that vmax = 2n, in which case the time is actually
exponential (in reality, the complexity of an algorithm is measured with
respect to the number of bits in the input. The fact is that even if vmax = 2n,
it adds log(2n) = n bits to the input for its representation and a time of 2n

is always exponential). In fact, the KNAPSACK problem is NP-complete,
and there is probably no such thing as a purely polynomial time algorithm.

The above algorithm is called pseudo-polynomial, because it is polyno-
mial in the numerical values of the input, but not polynomial in the number
of bits required to represent these values.

6.3 A PTAS for KNAPSACK

Since vmax is a problem, why not reduce the values of the objects so that
vmax is polynomial? If we divide all the values by the same K factor, the
problem remains the same. On the other hand, since all vi must be integers,
we will take the floor value of the division.

We don’t know by which factor K to divide our vi, so we’ll keep it as a
variable and hope to determine it during our analysis. To simplify our life,
we will sometimes write

v′i =
⌊ vi
K

⌋
to denote the modified weight. So we will create an instance with the same
W capacity, but the objects become

R′ = {(w1, v
′
1), . . . , (wn, v

′
n)}

CHAPTER 6. POLYNOMIAL TIME APPROXIMATION SCHEMES (ANDKNAPSACK)44

If for example K = vmax/n, the values v′i will all be polynomial. But
remember that K is unknown yet (we will discover later that K = vmax/n·ε).
Our algorithmic strategy is simple: modify the values and use dynamic
programming.

fonction sacadosPoly(W, (w1, v1), (w2, v2), . . . , (wn, vn),K)
For each i ∈ {1, . . . , n}, define v′i = bvi/Kc
X = sacados(W, (w1, v

′
1), . . . , (wn, v

′
n))

return X

This algorithm does not always give the optimal solution since accuracy
is lost in the floor values. In other words, the X solution returned by the
algorithm is optimal relative to the v′i values, but not necessarily relative
to the vi values. We now need to quantify this loss of precision with respect
to K. To quantify the loss of the floor values, we will use the following, left
in exercise.

Lemma 10. For all vi, since v′i = bvi/Kc, we have

vi
K
− 1 ≤ v′i ≤

vi
K

If we isolate vi, we get Kv′i ≤ vi ≤ K(v′i + 1).
LetX be the solution returned by sacadosPoly. SoAPP =

∑
(wi,vi)∈X vi

is the sum of the values compared to the original values vi.
As usual, our goal is to develop an inequality chain of the style APP ≥

. . . ≥ c · OPT . We just need to fill in the three little dots. Let’s start with
what we know.

APP =
∑

(wi,vi)∈X

vi ≥ K
∑

(wi,vi)∈X

v′i

We’re a bit blocked. Let’s try to connect this last expression with OPT . Let
X∗ be an optimal solution for the vi values. If we divide the element values of
X∗ by K, we can interpret X∗ as a solution for the values v′i. We know that
X is optimal with respect to these values. So

∑
(vi,wi)∈X∗ v

′
i ≤

∑
(vi,wi)∈X v′i.

CHAPTER 6. POLYNOMIAL TIME APPROXIMATION SCHEMES (ANDKNAPSACK)45

Let’s see what we can say about OPT .

OPT =
∑

(wi,vi)∈X∗
vi ≤

∑
(wi,vi)∈X∗

K(v′i + 1)

= K|X∗|+K
∑

(wi,vi)∈X∗
v′i

≤ K|X∗|+K
∑

(wi,vi)∈X

v′i

So, K
∑

(wi,vi)∈X v′i ≥ OPT −K|X∗|. By reconnecting with what we know
about APP , we have

APP ≥ K
∑

(wi,vi)∈X

v′i ≥ OPT −K|X∗|

Now it’s finally time to choose K. K must contain vmax somewhere for
the values to become polynomial. In addition, K should help us get rid of
|X∗|. With a little trial and error, we can see that we can set K = ε ·vmax/n
for all ε. Since n ≤ vmax, and since OPT ≥ vmax, we obtain

APP ≥ OPT−ε · vmax

n
|X∗| ≥ OPT−ε·vmax ≥ OPT−ε·OPT = (1−ε)·OPT

If we pass the value K = ε · vmax/n to sacadosPoly, the complexity of
the dynamic programming becomes

O(n · nvmax/K) = O(n2 · vmax · n/(ε · vmax))) = O(
1

ε
n3)

The better the desired precision, the closer ε is to 0, and the more 1/ε
increases complexity. The advantage is that we can adjust ε. We conclude
with the following theorem.

Theorem 14. For any ε >0, there is a (1−ε)-approximation to the KNAP-
SACK problem. which runs in time O(1

εn
3).

Chapter 7

Approximation and Linear
Programming

A linear program is an ultra-generic way of formulating an optimization
problem. We assume that we have a set of numerical variables x1, . . . , xn
(possibly others). One must specify the objective function to be minimized
or maximized, and this function must be linear with respect to the variables.
We also specify a set of linear constraints. A linear constraint is an inequality
in which each term contains only one variable, possibly multiplied by a
constant. Here is an example:

Minimize

10x1 + 12x2 + 4x3

Subject to

x1 + 2x2 ≥ 5

3x2 − x3 ≥ 3

x1 + x2 ≥ 2

0 ≤ xi ≤ 1 for each xi ∈ {x1, x2, x3}

The first two lines indicate the objective, and the other lines the con-
straints (the last line actually represents 6 different constraints).

46

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 47

Generally speaking, a linear program is often expressed in matrix form.

Minimize

cTx

Subject to

Ax ≥ b

x ≥ 0

where x = (x1, . . . , xn) is the vector of our variables, c represents the co-
efficients of the variables to be optimized, A is a matrix with n columns,
and b is a vector of constants. Here, only the vector x is unknown, while
the values of c,A and b contain only known constant values. We will often
denote by x∗ a solution vector, i.e. a vector containing concrete values for
the xi. The values of x∗ are denoted by x∗1, . . . , x

∗
n.

Assuming that the domain of xi is real, a remarkable result in computer
science is the following.

Theorem 15. There is a polynomial time algorithm which, given a lin-
ear program, finds an optimal solution to the values of xi such that each
constraint is satisfied.

One of the best known algorithms is the ellipsoid method. We will only
use this theorem as a black box. The resolution of linear programs is the
subject of an entire semester course. We are rather interested in using this
theorem for approximation purposes.

A linear program LP for short

7.1 LP for approximation

As we have seen, it is not always easy to find a relevant bound on OPT .
The usefulness of linear programs lies in their ability to provide such bounds.
The idea is to express an LP so that the optimal of the objective function
gives a bound on OPT . Note that the linear program does not have to be
exactly our problem — it only has to give a bound on OPT somehow. The
most common way is to use an relaxation to our problem.

Definition 1. Let P be a problem on variables x and L a linear program
on variables x. It is assumed that P and L are both of the same type (min-
imization or maximization). We say that L is a relaxation of P if, for any
feasible solution x′ of P , x′ satisfies all the constraints of L.

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 48

Note that x′ is not necessarily optimal for L, only for P . Note also that
feasibility only goes one way: a feasible solution for L is not necessarily
feasible for P . The advantage of expressing a relaxation for P is that the
optimal for L automatically gives a bound on the optimal for P .

Theorem 16. Let L be a linear program that is a relaxation for a problem
P . Let OPTL be the optimal for L and OPTP the optimal for P . Then:

• if P is a minimization problem, OPTP ≥ OPTL;

• if P is a maximization problem, OPTP ≤ OPTL.

Proof. Let’s assume that P is a minimization problem and be x′ an opti-
mal solution for P . The value of x′ for P is OPTP . Also, x′ satisfies all
the constraints of L (since it is a relaxation). Thus, x′ is one of the pos-
sible solutions for L, but not necessarily the optimal for L (L might find
a better solution x∗). We deduce that OPTL ≤ OPTP . The proof in the
maximization case is identical.

The high-level approach of the LP approximation for a P minimization
problem is as follows.

1. express relaxation L for P ;

2. solve L in polynomial time, which results in a vector x∗ of value OPTL
compared to L;

3. transform x∗ into a feasible solution x′ for P of value APP ;

4. argue that APP ≤ c ·OPTL (≤ OPT).

Points 3 and 4 are often the most difficult to handle and sometimes
require creativiy.

7.2 Relaxation by Integer Linear Programs (ILP)

Most of our algorithmic problems can be expressed with an Integer Linear
Programs (ILP), which are different from an LP. An ILP is like an LP, but
with the ability to add constraints such as

xi ∈ {0, 1}

More generally, one can require that xi ∈ {i1, . . . , ik}, where ij are integers.
This is a fundamental difference. In a normal LP, one usually requires xi ≥ 0,

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 49

or 0 ≤ xi ≤ 1, which allows the xi to be real. The restriction to integers
makes the problem NP-complete.

However, ILPs suggest a completely natural relaxation. Just transform
the xi ∈ {0, 1} into 0 ≤ xi ≤ 1 constraints. Any solution that is feasible
for the ILP is feasible for LP, so it is a relaxation. The problem is that in
a relaxation, a solution x∗ can be fractional. We then need some ways to
handle these fractions.

Before using LP and ILP for approximation, here are some common
tricks when developing an ILP, assuming variables xi ∈ {0, 1}:

• express the logical OR xi ∨ xj : constraint xi + xj ≥ 1;

• express the negation xi: write (1− xi);

• express the implication xi ⇒ xj : knowing that xi ⇒ xj is equivalent
to xi ∨ xj , we can add the constraint 1− xi + xj ≥ 1. We can simplify
to xj − xi ≥ 0, but we often prefer the former.

Finally, let’s focus on ideas that are not allowed:

• you should not multiply two variables in the same constraint (or in
the objective function). For example, 10x1 + 3x2 · x3 ≤ 1 is forbidden,
because it is not linear;

• you should not use non-linear functions, even if seemingly simple, such
as min(x1, x2),max(x1, x2), |xi|, bxic, dxie;

7.2.1 Application to VERTEX-COVER

Let G = (V,E) be a graph. Recall that in VERTEX-COVER, we are looking
for an X ⊆ V of minimum size that touches each edge. This can be expressed
with an ILP. We will assume that V = {v1, . . . , vn}. For each vi, we will
create a variable xi ∈ {0, 1}. The idea is that if in a solution, we have xi = 1,
this represents vi ∈ X, and if xi = 0, vi /∈ X.

Minimize
n∑

i=1

xi

Subject to

xi + xj ≥ 1 for all vivj ∈ E
xi ∈ {0, 1} for all vi ∈ V

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 50

This expresses VERTEX-COVER because we want to minimize the num-
ber of variables with xi = 1 corresponding to what we will put in X. Con-
straints xi + xj = 1 require that for each edge vivj ∈ E, we add at least one
of vi or vj to X.

This ILP is NP-complete to solve. We will therefore use the following
relaxation.

Minimize
n∑

i=1

xi

Subject to

xi + xj ≥ 1 for all vivj ∈ E
0 ≤ xi ≤ 1 for all vi ∈ V

This LP can be solved in polynomial time. Let x∗ be an optimal solution
to this LP. The problem is that x∗ can express the presence of a vi in X in a
fractional way. That is, how to interpret xi = 1/4? Or xi = 0.6180339 . . .?
What does this correspond to in a concrete solution to VERTEX-COVER?
This is where we often have to be creative. We have to find a way to
transform the fractional solution x∗ into a concrete solution.

In the case of the VERTEX-COVER, it turns out that we just have to
round the xi to the nearest integer. This amounts to including in our X
solution every vi such as x∗i ≥ 1/2. We then have to argue that we don’t
go too far from the optimal

∑n
i=1 x

∗
i . The algorithm can be summarized as

follows.

fonction vcLP(G = (V,E))
Build the relaxation LP above for G
Obtain an optimal solution x∗ for the LP
X = ∅
for i = 1..n do

if x∗i ≥ 1/2 then
X.append(vi)

end
return X

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 51

It must now be argued that this gives a good approximation. There are
two elements here. We must make sure that X is indeed a feasible solution
(i.e. X touches each edge), and then we must analyze the approximation
ratio.

Theorem 17. The vcLP algorithm is a 2 approximation.

Proof. First we will argue that for any vivj ∈ E, we have vi ∈ X or vj ∈ X
(or both). Suppose that this is not the case and that there is vivj ∈ E such
that vi /∈ X and vj /∈ X. Since neither was added to X, we had x∗i < 1/2
and x∗j < 1/2. This is a contradiction because x∗ is supposed to satisfy
every constraint in our LP, whereas here we would have x∗i + x∗j < 1. We
deduce that X covers each edge.

Let’s analyze the approximation ratio. Since the LP L is a VERTEX-
COVER relaxation, we have OPT ≥ OPTL =

∑n
i=1 x

∗
i . For each vi that is

in X, we had x∗i ≥ 1/2. This means that 1 ≤ 2x∗i . So,

APP = |X| =
∑
vi∈X

1 ≤
∑
vi∈X

2x∗i = 2
∑
vi∈X

x∗i ≤ 2

n∑
i=1

x∗i ≤ 2 ·OPT

This approach is called the rounding technique. We take the values of
x∗ and round them to obtain a vector in the {0, 1}. Of course, this does not
always (in fact, rarely) work. There are many ways to round, and sometimes
we have to be creative.

7.3 Packet delivery over a ring network

LetG = (V,E) a cycle of n vertices. Let V = {1, 2, . . . , n} and E = {i, i+1} :
i ∈ {1, . . . , n}}. We define n+ 1 = 1, which simplifies the notation.

Here, G represents a circular network. We have a set of packets to
deliver, where each packet has a source and a destination. For each packet
(i, j), we must choose to circulate clockwise or counterclockwise. The load
of an edge e ∈ E is the number of packets that pass through e. The goal is
to minimize the maximum load.

For each (i, j), we denote by Hi,j the clockwise path from i to j, and by
Ai,j the counterclockwise path.

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 52

RING-DELIVERY
Input: cycle G = (V,E) of n vertices, packets P =
{(i1, j1), . . . , (im, jm)}
Output: a choice of paths W which contains Hi,j or Ai,j for each
(i, j) ∈ P , which minimizes the maximum number of packets on an
edge, i.e. minimizes

max
e∈E
|{W ′ ∈W : e is on W}|

We will reformulate this problem into an ILP. We mentioned above that
we could not use min and max in an ILP, whereas our criterion to be min-
imized contains max. We will use a trick to “simulate” this max using
additional variables. This is possible when we minimize a maximum. Our
variables will be:

• hij which indicates if we take the path from i to j clockwise;

• aij which indicates if we take the path from i to j counterclockwise;

• ce which counts the number of paths that pass through the e edge;

• cmax which is the maximum ce (what we want to minimize).

The variables hij and aij should be 0 or 1, but we go directly to relax-
ation.

Minimize

cmax

Subject to

hij + aij ≥ 1 for all (i, j) ∈ P

ce =
∑

hij :e∈Hij

hij +
∑

aij :e∈Aij

aij for all e ∈ E

cmax ≥ ce for all e ∈ E
0 ≤ aij , hij ≤ 1 for all (i, j) ∈ P

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 53

Let’s imagine that hij ∈ {0, 1} and aij ∈ {0, 1}. The first constraint
ensures that a path is chosen for each (i, j) ∈ P . The second ensures that
ce is the number of chosen paths that pass through e. The third constraint
makes sure that cmax is greater than all ce. Since we are trying to minimize
cmax, this variable has no interest in exceeding the maximum load of an edge
and will therefore be equal.

Since the ILP version models the problem, our LP is a relaxation and
therefore OPT ≥ OPTLP .

We will use the same rounding trick as in VERTEX-COVER. For each
(i, j) ∈ P , h∗ij or a∗ij must be at least 1/2. We take the larger of the two,
which ensures a 2-approximation.

fonction ringDeliveryLP(G = (V,E), P)
Build the relaxation LP above for G
Get an optimal solution for the LP, with values h∗ij and a∗ij
W = ∅
for (i, j) ∈ P do

if hij ≥ 1/2 then
Add Hij to W

else
Add Aij to W

end
return W

end

A bit like VERTEX-COVER, this is a 2-approximation.

Theorem 18. ringDeliveryLP is a 2-approximation.

Proof. We denote by h∗ij , a
∗
ij , c
∗
e and c∗max the values of an optimal solution

to the LP. Let W be the set of paths returned by ringDeliveryLP. Let e ∈ E
and let We be the paths of W that contain e. Let W ′ ∈ We, and say that
W ′ goes from i to j. If W ′ = Hij , we added W ′ to W because hij ≥ 1/2. If
W ′ = Aij , it’s because aij ≥ 1/2. In both cases, hij or aij contributes at least
1/2 to ce (because e is on the path W ′). This means that ce ≥ 1/2 · |We|.
The maximum load of W is APP , which means that cmax ≥ 1/2 · APP .
That is, APP ≤ 2 · cmax = 2 ·OPTLP ≤ 2 ·OPT .

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 54

7.4 Randomized Rounding

We will now see a technique in which rounding is done probabilistically. We
use the MAX-COVERAGE problem as an example. In this problem, we
want to cover a maximum number of elements with k sets.

MAX-COVERAGE
Input: universe U = {u1, . . . , un}, sets S = {S1, . . . , Sm} and
integer k.
Output: sets S′ ⊆ S such that |S′| = k and which maximize
|
⋃

Si∈S′ Si|, i.e. the total number of items covered by S′.

We can express this problem with an ILP — we give the LP relaxation
directly here. We will have two types of variables: xi corresponds to the
choices of a set Si, and yj corresponds to covering the element uj .

Maximize
n∑

j=1

yj (maximize the number of items covered)

Subject to
m∑
i=1

xi = k (choose k sets)

yj ≤
∑

Si:uj∈Si

xi for all uj ∈ U

0 ≤ xi ≤ 1 for i = 1..m

0 ≤ yj ≤ 1 for j = 1...n

In exercise, you can demonstrate that this is indeed a relaxation of MAX-
COVERAGE and so that OPT ≤ OPTLP . Again, this is because any
feasible solution to MAX-COVERAGE gives the LP a feasible solution, so
the LP can only do better.

Let x∗ = (x∗1, x
∗
2, . . . , x

∗
m) the values of x of an optimal solution to this

LP, and let y = (y∗1, . . . , y
∗
n) the values of y. The sum of these x∗i must be k

and represent fractions of presence of sets of S. We will interpret these x∗i

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 55

as probabilities. In fact, the sum of the x∗i should be 1 to do so, whereas it
is currently k. We will therefore interpret

(x∗1/k, x
∗
2/k, . . . , x

∗
m/k)

as a probability distribution. We will draw k sets at random according to
this probability, with replacement. So we may draw the same set several
times — in that case, too bad, we return less than k different sets and cover
less than we could have.

fonction maxcoverLP(U, S, k)
Build the relaxation LP L above
Obtain an optimal solution x∗ for L
S′ = ∅
while |S′| < k do

Choose an index i at random, where each i is chosen with
probability x∗i /k

Add Si to S′

end
return S′

In practice, one would of course want to avoid choosing the same set
twice. We could add another set when this happens, but our calculations
would be much more complex.

To analyze the precision of this algorithm, we must look at the proba-
bility of covering an element uj ∈ U . The LP already gives us a ”coverage
fraction” of uj with the value of y∗j . The probability of covering uj will
therefore be put into perspective with y∗j . Since the latter value contributes
to OPTLP , we will be able to compare ourselves to the optimal.

Lemma 11. For any uj ∈ U , the probability that S′ covers uj is at least
y∗j ·(1−1/e), where e ' 2.71828 is Euler’s constant and S′ is the set returned
by maxCoverageLP.

Proof. If only one set is chosen, the probability of covering uj is the sum
of the probabilities of the sets containing uj , which is

∑
Si:uj∈Si

x∗i /k =
1
k ·
∑

Si:uj∈Si
x∗i . It turns out that the LP specifies a constraint with this

sum. That is, we know that
∑

Si:uj∈Si
x∗i ≥ y∗j , and thus the probability of

CHAPTER 7. APPROXIMATION AND LINEAR PROGRAMMING 56

covering uj by choosing one set is at least

1

k
·
∑

Si:uj∈Si

x∗i ≥
y∗j
k

So we have a probability 1− y∗j
k of not covering uj with a set.

Since each set is chosen independently of the previous choices, the prob-

ability of never covering uj by choosing k sets is therefore
(

1− y∗j
k

)k
. And

the probability of covering uj is 1−
(

1− y∗j
k

)k
. It is possible to show that

1−
(

1−
y∗j
k

)k

≥ (1− 1/e)y∗j

but we leave it in exercise. One way to see it is that the function on the left,
with respect to y∗j , is convex and greater than or equal to the function on
the right at the points y∗j ∈ {0, 1}, while the function on the right is linear.
This demonstrates the lemma.

Theorem 19. maxcoverLP is a (1− 1/e)-probabilistic approximation.

Proof. Let Ij be an indicator variable such that Ij =1 if the algorithm covers
uj , and Ij = 0 otherwise. We have

E[APP] = E[

n∑
j=1

Ij] =

n∑
j=1

E[Ij] ≥
n∑

j=1

(1− 1/e)y∗j

= (1− 1/e)

n∑
j=1

y∗j

= (1− 1/e) ·OPTLP

Part II

Algorithms with
parameterized complexity

57

Chapter 8

Parameterized complexity

In this second part, we are going to study exact algorithms, that is to say
which guarantee to return us an optimal solution. Since we are studying NP-
complete problems, we cannot expect these algorithms to run in polynomial
time. Instead, we must move towards exponential algorithms.

This is a major paradigm shift from approximation algorithms. It is no
longer necessary to compare the solution of the algorithm with OPT . Also,
our algorithms are no longer required to be in polynomial time.

However, we wish to limit the magnitude of the exponential complexity.
We will assume that we are dealing with data on which a certain k parameter
is small, independently of n. In this case, an algorithm in time O(2k · n)
will be much more efficient than an algorithm in time O(2n). If k remains
small, O(2k · n) remains practical for n going into the tens of thousands,
while O(2n) will never really go further than n = 100. For example, one
may wonder if there is a VERTEX-COVER of size at most k, and we can
assume that no matter how many n vertices there are, we are only interested
in whether we could block entry at k people or less.

The spirit of parameterized complexity is therefore to isolate the expo-
nential part of an algorithm on a parameter k, while n must remain poly-
nomial. In fact, we will allow a complexity f(k) for any function f with
respect to the part affecting k. The important thing is that k is not treated
as a constant, so the polynomial that affects n must remain independent of
k. Therefore, a complexity O(2k · n100) is acceptable, but not a complexity
O(nk).

Brute-force algorithms try all possible solutions and often result in an
O(2n) algorithm. Parameterized compelxity can be seen as ”intelligent
brute-force”, in which an attempt is made to limit the enumeration of pos-

58

CHAPTER 8. PARAMETERIZED COMPLEXITY 59

sibilities according to k and not according to n.

8.1 Defining an FPT algorithm

Let P be an algorithmic problem. Unlike approximation algorithms, there is
no fundamental distinction between a minimization or maximization prob-
lem (with a few exceptions). Let I be an instance of P and let k be a
numerical value. We will say that (I, k) is an instance of P parameterized
by k.

Definition 2. A P problem is fixed parameter tractable (FPT) if there is
an algorithm that, for any (I, k) parameterized instance of P , returns an
optimal solution in time O(f(k) · nc), where f is an arbitrary function, n is
the size of the I instance, and c is a constant independent of k.

We will say that P is FPT in parameter k.

Note that the interpretation of k is not given. It is up to us to choose
what this k represents. Let’s emphasize again that the exponent that af-
fects n must be independent of k. The f function, on the other hand, is
arbitrary, which sometimes allows complexities disconnected from practice.
For example, an algorithm in time

O(222
2k

· n1000)

is eligible. We will avoid these cases most of the time, and our algorithms
will instead have a practical form such as O(2kṅ).

8.2 The canonical example: VERTEX-COVER

There is a very simple O(2k · n) algorithm for VERTEX-COVER, where k
is the number of vertices of an optimal solution.

Let’s first analyze the naive brute-force algorithm.

CHAPTER 8. PARAMETERIZED COMPLEXITY 60

fonction vertexCoverBrute(G = (V,E))
X = V
for each subset S ⊆ V do

if S covers all the edges and |S| < |X| then
X = S

end

end
return X

There are 2n possible subsets, and checking if a subset covers the edges
takes a time O(n+m), where m = |E|. The complexity of this algorithm is
O(2n · (n+m)).

Let’s study the parameterized version of this problem.

VERTEX-COVER
Input : graph G = (V,E)
Parameter : k, the maximum desired size of a solution
Output : a set X ⊆ V covering the edges such that |X| ≤ k, or
null if such a set does not exist

Note that in reality, we are not looking for the optimal solution. We
only want to know if a VERTEX-COVER of size k or less exists. This
contrasts with the notion of exact algorithm stated earlier. The fact is that
if a parameterized VERTEX-COVER algorithm exists, one can try all k in
ascending order to find the optimal one.

Here is a bad attempt to get an FPT algorithm for this problem. We
try to be more brilliant than the naive algorithm and we think that we can
use the k parameter to limit our brute force search. This doesn’t work.

CHAPTER 8. PARAMETERIZED COMPLEXITY 61

fonction vertexCoverSemiBrute(G = (V,E), k)
for i = 1...k do

for each subset S ⊆ V size i do
if S covers all the edges and |S| < |X| then

return X
end

end

end
return null

This algorithm is correct, but what is its complexity? There are
(
n
i

)
possible subsets of i vertices, and

(
n
i

)
∈ Ω(ni) (reminder: Ω(f(n)) can be

seen as the inverse of O and means “grows at least as fast as f(n)”). In the
worst case, the algorithm will try everything and the number of sets tested
will be at least

k∑
i=1

(
n

i

)
≥
(
n

k

)
∈ Ω(nk)

The complexity of this algorithm is therefore Ω(nk). Since the exponent
of n depends on k, it is not parameterized complexity.

Here is an algorithm that works. We observe that for each uv edge, we
must include u in our coverage, or v. So we will choose an arbitrary uv edge
and connect to both possibilities. If we decide to add u, its incident edges
are covered and we can remove them from the graph (same thing with v).
After choosing to add u or v, we get one less choice of our vertex cover and
we can decrement k. We stop when we have found a cover, or when k has
become 0 and we are no longer allowed to add anything. We will pass as a
parameter the X set we have built so far (at the initial call, X = ∅).

CHAPTER 8. PARAMETERIZED COMPLEXITY 62

fonction vertexCoverFPT(G = (V,E), k,X)
if X covers all edges then

return X
end
if k = 0 then

return null
end

Let uv ∈ E be chosen arbitrarily; Or Gu obtained from G by
removing u and its edges;
Xu = vertexCoverFPT (Gu, k − 1, X ∪ {u})

Let Gv be obtained from G by removing v and its edges
Xv = vertexCoverFPT (Gv, k − 1, X ∪ {v})

if Xu 6= null then
return Xu

else if Xv 6= null then
return Xv

else
return null

end

This algorithm is correct because it tests all the possibilities for the
uv edge, which must be covered no matter what we do. The algorithm
performs what is called a bounded branching, a very common technique in
parameterized complexity. To evaluate the complexity of this algorithm,
just note that it builds a recursion tree where each vertex represents a call,
with the root representing the initial call. Each vertex has 2 children (2
recursive calls) and the height of the tree is bounded by k. So we have a
binary tree of height k, and we know (don’t we?) that such a tree has O(2k)
vertices. Since the time to process a call is O(n), the complexity is O(2k ·n).

8.3 Another example: MAX-CLIQUE

Let G = (V,E) a graph. Recall that a clique is a set of vertices X such that
for any distinct u, v ∈ X, uv ∈ E. We can try to parameterize the maximum
clique problem as follows.

CHAPTER 8. PARAMETERIZED COMPLEXITY 63

MAX-CLIQUE (parameter “clique size”)
Input : graph G = (V,E)
Parameter : k, the desired size of a clique
Output : a X ⊆ V clique of size k, if it exists, or null otherwise

The naive algorithm would test all subsets of size k and would take at
least O(nk) time. It is therefore not a viable option.

It turns out that despite years of research, no one has found an FPT
algorithm for MAX-CLIQUE parameterized by the size of the click. In fact,
it is believed that it is impossible that there is a O(f(k) · nc) algorithm for
this problem. MAX-CLIQUE is known as W [1]-complete. There is a formal
definition of what this means, but it is beyond the scope of these notes.
Let’s say that W [1]-complete is the NP-complete analog for FPT problems,
and that a W [1]-complete problem means that the problem is probably not
FPT.

However, another parameterization can be attempted. Let’s say that the
G degree is not too large (the degree is the maximum number of neighbors
of a node). Therefore, each vertex has at most k neighbors.

MAX-CLIQUE (parameter “maximum degree”)
Input : graph G = (V,E)
Parameter : k, the maximum degree of a G vertex
Output : a X ⊆ V clique of maximum size

Note some subtleties here. Since the k parameter has no (direct) link
with the maximum clique, we require that the return value be the maximum
clique. One must therefore manage to isolate the complexity from the degree
of the graph. It becomes possible to make an “intelligent brute force”. Just
consider each vertex and see if it and its neighborhood form a fairly large
clique.

CHAPTER 8. PARAMETERIZED COMPLEXITY 64

fonction maxCliqueDegreFPT(G = (V,E) of degree at most k)
X = ∅
for v ∈ V do

for each subset S ⊆ N(v) do
if S ∪ {v} is a clique and |S|+ 1 > |X| then

X = S ∪ {v}
end

end

end
return X

When developing such an algorithm, one must of course demonstrate
that it is correct, and that its complexity is FPT.

Theorem 20. The algorithm maxCliqueDegreFPT returns a maximum size
clique and runs in time O(k22k ·n). The MAX-CLIQUE problem is therefore
FPT in the parameter “degree of the graph”.

Proof. It is clear that the algorithm is correct. The maximum clique is
formed by a vertex v ∈ V and a subset of its neighborhood and the algorithm
tests all possibilities.

For complexity, the main loop iterates on n vertices. For each v ∈ V ,
the subsets of N(v) are listed. Since |N(v)| ≤ k, there are at most 2k such
subsets. Moreover, each subset is of size at most k, and checking that each
pair of N(v) vertices has an edge can be made in time O(

(
k
2

)
) = O(k2). So,

the processing of a v ∈ V is done in time O(k22k) and there are n vertices
to process. The complexity is therefore O(k22k · n).

Can VERTEX-COVER be parameterized by the degree of G?

The same ideas of parameterization by the G degree fail on VERTEX-
COVER. In fact, this is probably not possible. VERTEX-COVER is there-
fore in the opposite situation to MAX-CLIQUE.

The reason why it is not possible is that VERTEX-COVER is NP-
complete even when the input graph has degree 3. If VERTEX-COVER was
FPT in the degree of G, we would have an algorithm in time O(f(k) · nc)
for the problem, where k is the maximum degree. This would imply that if
k = 3, we would have an algorithm O(f(3) ·nc). But here, f(3) is a constant
regardless of f (for example, if f(k) = 2k, then 23 = 8 is a constant). So

CHAPTER 8. PARAMETERIZED COMPLEXITY 65

with k = 3, we would have an algorithm in time O(nc), which is in poly-
nomial time, for VERTEX-COVER with degree 3. We would have solved
a complete NP-complete problem in polynomial time! This means that if
VERTEX-COVER was FPT in the degree parameter, we would have P =
NP. We would need another course to appreciate the depth of this state-
ment. Let’s just say that no one has proven that this is not possible, but it
is very unlikely to happen.

The usual way to formulate this kind of result is to use the contraposition,
as follows.

Theorem 21. If P 6= NP, then VERTEX-COVER parameterized by the
degree of the graph is not FPT.

Chapter 9

Branching algorithms

The idea of a branching algorithm is to identify a limited number of possible
cases that could form an optimal solution, and then to recursively branch
into each possibility. In order to obtain an FPT algorithm, two conditions
must generally be satisfied:

• the number of cases must be bounded by a function f(k);

• each case must reduce the value of k.

If these two conditions are met, the recursion tree will be such that
each node has f(k) children and such that the depth is bounded by p(k),
where f and p are any function. Consequently, the tree will have at most
f(k)p(k) vertices, giving an FPT algorithm (assuming that each recursion is
in polynomial time).

We have already seen an example of a branching algorithm with VERTEX-
COVER. Each node of the recursion tree had f(k) = 2 children and the
depth was bounded by p(k) = k, giving an algorithm in time O(2knc).

Many problems can be solved with branching algorithms. The analysis
of the recursion tree sometimes becomes complex, and we will develop tools
to do so. But first, let’s see some basic examples.

9.1 3-HITTING SET

In the 3-HITTING-SET problem, we receive sets S1, S2, . . . , Sm each having
3 elements, on universe U = {u1, . . . , un}. One must choose a minimum
number of elements of U in order to have an intersection with each Si. We
can imagine a situation in which students each offer 3 days of availability for

66

CHAPTER 9. BRANCHING ALGORITHMS 67

an appointment with a professor, and the professor must choose a minimum
number of days so that each student has an availability among these days.
We will parameterize by the number of items chosen.

3-HITTING-SET
Input : sets S = {S1, . . . , Sm} each size 3 on universe U =
{u1, . . . , un}
Parameter : k, the size of a solution
Output : subset X ⊆ U such that X ∩ Si 6= ∅ for all i = 1...m and
such that |X| ≤ k, or null if non-existent

The idea is about the same as VERTEX-COVER (in fact, this problem
is a generalization of VERTEX-COVER). For each Si = {a, b, c}, we have
to include a, b or c. We branch into the three possibilities and stop when we
have reached k elements. When we branch into one of the cases, we remove
all the Si that become covered.

fonction 3hitset(S,U, k,X)
if k < 0 then

return null
end
if S = ∅ then

return X
end
Choose Si ∈ S arbitrarily
Let a, b, c be the elements of Si
Xa = 3hitsandFPT (S \ {Sj : a ∈ Sj}, U, k − 1, X ∪ {a})
Xb = 3hitsetFPT (S \ {Sj : b ∈ Sj}, U, k − 1, X ∪ {b})
Xc = 3hitsetFPT (S \ {Sj : c ∈ Sj}, U, k − 1, X ∪ {c})
if one of Xa, Xb or Xc is not null then

Return the one from Xa, Xb, Xc that is not null
else

return null
end

The algorithm is correct because it tests every way to have an intersection
with every Si.

CHAPTER 9. BRANCHING ALGORITHMS 68

The complexity of this algorithm can be quickly evaluated. It takes
time O(m) for each call to find the Sj to remove. The algorithm creates a
recursion tree where each node has 3 children, and the depth is bounded by
k. So there are O(3k) nodes. The complexity is O(3k ·m).

9.2 CLUSTER-EDITING

In CLUSTER-EDITING, we have a graph and we want to modify (add/remove)
a minimum number of edges so that each connected component of G is a
clique, which form what are called clusters.

CLUSTER-EDITING
Input : graph G = (V,E)
Parameter : k, the number of edges to modify
Output : a list of edges E+ to add and a list of edges E− to remove
such that |E+| + |E−| ≤ k and such that G′ = (V, (E ∪ E+) \ E−)
has only cliques as connected components.

We will develop a recursion tree with O(3k) nodes with the following
property (to be proved in exercise).

Theorem 22. Each connected component of a graph G is a clique if and
only if for any u, v, w ∈ V , uv ∈ E and vw ∈ E implies that uw ∈ E.

Note that if uv ∈ E, vw ∈ E but uw 6 E, the vertices u, v, w form a
path with three vertices, which is called a P3. CLUSTER-EDITING is thus
equivalent to modifying a minimum of edges so that the graph does not have
a P3.

We will find conflicting u, v, w (which form a P3), and branch into ways
of fixing the problem. We note that if uv ∈ E and vw ∈ E but uw /∈ E, we
have three ways to satisfy the theorem:
– remove uv
– remove vw
– add uw.

Each case modifies one edge and reduces k by 1.

CHAPTER 9. BRANCHING ALGORITHMS 69

fonction clusterEditing(G = (V,E), k, E+, E−)
if k < 0 then

return null
end
if G has no P3 then

return (E+, E−)
end

Find u, v, w that form a P3

Let G1 be obtained from G by removing uv
(E+

1 , E
−
1) = clusterEditing(G1, k − 1, E+, E− ∪ {uv})

Let G2 be obtained from G by removing vw
(E+

2 , E
−
2) = clusterEditing(G2, k − 1, E+, E− ∪ {vw})

Let G2 be obtained from G by adding uw
(E+

3 , E
−
3) = clusterEditing(G3, k − 1, E+ ∪ {uw}, E−)

if one of the calls did not return null then
Return the solution not null

else
return null

end

Each call takes time O(n3) because we have to find u, v and w (and it is
not trivial to do better than watching each triplet). This algorithm creates
a recursion tree where each node has three children, and the depth is k or
less. The complexity is therefore O(3kn3).

9.3 More Intelligent Branching

If we dig a little deeper, we can often refine our branching tree to reduce
the number of node children or the depth (ironic that digging reduces the
depth!). The price to pay is that we have to work a little harder and analyze
more complex recurrences. Let’s go back to VERTEX-COVER.

In the algorithm we saw earlier, we were branching into two cases on an
uv edge:
– include u;
– include v.

An alternative way to see this is to branch in two cases:

CHAPTER 9. BRANCHING ALGORITHMS 70

– include u;
– do not include u.

But if we decide that u is not in the solution, it is not able to cover its
edges. Let’s say that u’s neighbors are v1, . . . , vl. If we don’t include u, we
have to include v1 to cover uv1, and we have to include v2 to cover uv2, and
so on. So, choosing not to include u forces us to include deg(u) vertices. If
deg(u) ≥ 2, this will allow us to reduce k by more than 1 and thus limit the
depth of the recursion tree.

Let’s write the algorithm first. We want to branch on u such that
deg(u) ≥ 2. If such a u does not exist, all vertices have a degree of 0 or 1
and it is trivial to decide if there is a solution of size k or less (exercise!).

fonction vc2(G = (V,E), k,X)
if k < 0 then

return null
end
if G has no edge then

return X
end
if G has only vertices of degree 0 or 1 then

Find the optimal vertex cover X ′

If |X ′| ≤ k, return X ′ ∪X, otherwise return null

end

Let u be a vertex of degree at least 2
Obtain Gu by removing u and its edges from G
X1 = vc2(Gu, k − 1, X ∪ {u})

Obtain G∗ by removing {u} ∪N(u) and their edges
X2 = vc2(G∗, k − |N(u)|, X ∪N(u))

if one of X1 or X2 is not null then
return the non-null vertex cover

else
return null

end

This algorithm is correct: when we consider a u, when we include it in

CHAPTER 9. BRANCHING ALGORITHMS 71

our solution, its edges are covered. On the other hand, if we don’t include
u, we must include all its neighbors.

For complexity, we will focus only on the number of nodes in the branch
tree. Let t(k) be the number of such nodes on input k. When recursive calls
are made by the algorithm, we have

t(k) = t(k − 1) + t(k − |N(u)|)

The larger N(u) is, the smaller t(k) will be. Since we have |N(u)| ≥2, we
can assume that in the worst case,

t(k) = t(k − 1) + t(k − 2)

Even without knowing the initial conditions of this recurrence, it is possible
to deduce that

t(k) ∈ O(1.618k)

In fact, t(k) grows exactly like the Fibonacci function.
The above algorithm therefore takes time O(1.618k ·(n+m)), a significant

improvement over the 2k we had earlier.

9.4 How to solve recurrences?

The simple answer to this question is to use software. Few algorithm design-
ers analyze recurrences manually, except when they are too complicated for
a program. But it is important to know how to use the output of software.

The most frequent recurrences are called homogeneous linear recurrence.
They have the form

t(k) = a1t(k − 1) + a2t(k − 2) + . . .+ adt(k − d)

where d is a constant, and the ai are also constants.
The idea is that these recurrences are O(ck) for a constant c that needs

to be determined. To find this c, we will simply assume that t(k) = ck and
solve. This is not always true because constants are ignored, but in terms
of O, everything remains valid.

So, assuming that t(k) = ck, we have

t(k) = a1t(k − 1) + a2t(k − 2) + . . . adt(k − d)

ck = a1c
k−1 + a2c

k−2 + · · · adck−d

CHAPTER 9. BRANCHING ALGORITHMS 72

By putting everything on the same side, we have

ck − a1c
k−1 − a2c

k−2 − · · · adck−d = 0

We can divide everything by ck−d and get

cd − a1c
d−1 − a2c

d−2 − · · · adc0 = 0

This is a polynomial of degree d with c as variable. It is called the charac-
teristic polynomial.

Since the degree is d, there are d possible roots (i.e. d values of c such
that the polynomial gives 0). Today’s software can output all roots. Some
of them are sometimes complex (in the sense of complex numbers), but it
turns out that we can take the largest real root to get c. That is, if the real
roots of the polynomial are r1, r2, . . . , rl, the number of nodes of our tree is
O(max{r1, . . . , rl}k).

For example, the VERTEX-COVER case above gave

t(k) = t(k − 1) + t(k − 2)

which becomes

ck = ck−1 + ck−2

ck − ck−1 − ck−2 = 0

c2 − c− 1 = 0

Wolfram tells us that the roots are about 1.618 and −0.618. We take the
larger c = 1.618 and the number of nodes in the recursion tree is O(1.618k).

The recipe for linear homogeneous recurrences is therefore as follows:

1. Obtain t(k), the recurrence for the number of recursion tree nodes;

2. Assume that t(k) = ck;

3. Write the characteristic polynomial;

4. Find the roots of the polynomial;

5. Let r be the largest real root;

6. The recursion tree has O(rk) nodes.

CHAPTER 9. BRANCHING ALGORITHMS 73

9.5 An improved 3-HITTING-SET

We are going to improve our 3-HITTING-SET algorithm stated above by
digging a bit more into our branching cases. The idea is the following: let’s
take two sets Si and Sj such that their intersection Si ∩ Sj is maximum.
Suppose that Si = {x, y, z} and Sj = {x, y, a}. We imagine what we need to
include in our solution X to cover Si and Sj . There are three possibilities:
include x, include y, or include a and b. The first two cases reduce k by 1,
but the last case reduces k by 2. We get the recurrence

t(k) = 2t(k − 1) + t(k − 2)

It is possible that Si = {x, y, z} and Sj = {x, a, b}. One can include x,
or include one of y, z and one of a, b. The possible choices are therefore to
include {x}, {y, a}, {y, b}, {z, a}, or {z, b}. The first decreases k by 1, the
other four decrease k by 2. This case leads to the recurrence

t(k) = t(k − 1) + 4t(k − 2)

It is also possible that all Si and Sj have no intersection. This case must
be handled separately, but this is simple. If the Si do not share an element,
at least one element from each Si must be included. So, if |Si| > k, we
return null, and otherwise we return one element per Si. The pseudo-code
is described below. Note that instead of making the recursive calls explicit,
we just list the cases we are branching into. We also do not specify the return
behavior (return the non null solution if there is one, or null if not). This
is common in FPT — this allows to shorten the presentation of standard
branching calls.

CHAPTER 9. BRANCHING ALGORITHMS 74

fonction 3hitsandImproved(S,U, k,X)
if k < 0 then

return null
end
if S is empty then

return X
end
if Si ∩ Sj = ∅ for all distinct Si, Sj ∈ S then

if |S| > k then
return null

else
Add to X an item from each Si
return X

end

end
Let Si, Sj be distinct such that |Si ∩ Sj | is maximum
if |Si \ Sj | = 2 then

Let Si = {x, y, z} and Sj = {x, y, a}
Branch recursively into the following cases:
– Add x to X, reduce k by 1
– Add y to X, reduce k by 1
– Add z and a to X, reduce k by 2

else if |Si ∩ Sj | = 1 then
Let Si = {x, y, z} and Sj = {x, a, b}
Branch recursively into the following cases:
– Add x to X, reduce k by 1
– Add y and a to X, reduce k by 2
– Add y and b to X, reduce k by 2
– Add z and a to X, reduce k by 2
– Add z and b to X, reduce k by 2

end

We are not going to dwell on the fact that this algorithm is correct.
Let’s focus on complexity. We have two possible situations and therefore
two recurrences. Which one do we take? As we always do in algorithms: we
take the worst case! One of the two cases of the algorithm should be worse
than the other. We will therefore assume that it is always the worst case
that occurs.

CHAPTER 9. BRANCHING ALGORITHMS 75

In the case where |Si ∩ Sj | = 2, we had

t(k) = 2t(k − 1) + t(k − 2)

with the characteristic polynomial

c2 − 2c− 1 = 0

and by finding the zeros, we have c ' 2.4143.
in the case where |Si ∩ Sj | = 1, we had

t(k) = t(k − 1) + 4t(k − 2)

with the characteristic polynomial

c2 − c− 4 = 0

and we have c ' 2.5616.
So we can assume that in the worst case, the branch shaft a O(2.5616k)

knots. Each call can be implemented in time O(m), and by rounding, the
complexity is therefore O(2.57k ·m).

9.6 The consensus sequence

We end this chapter with an example where it is not trivial to limit the
number of cases to branch into.

Let S be a sequence of characters. We write S[i] for the character at
the position i of S. The Hamming distance d(S, T) between two S and T
sequences of the same length is defined as the number of different characters
per position. That is,

d(S, T) = |{i : S[i] 6= T [i]}|

CONSENSUS-SEQUENCE
Input : sequences of characters S1, S2, . . . , Sn, each of length `
Parameter : distance d
Output : a sequence S such that d(S, Si) ≤ d for any Si, or null
if non-existent.

Before thinking about an FPT algorithm, one must analyze the problem

CHAPTER 9. BRANCHING ALGORITHMS 76

and derive some observations. Note that if all sequences have the same
c character at the p position, then the consensus sequence will have the c
character at the p position. We can therefore ignore this position and assume
that for each p position, there are Si, Sj such that Si[p] 6= Sj [p]. This is not
fundamental, but does show a basic reduction rule.

Another observation is that if we have Si and Sj too distant, there can
be no solution. One way to see this is to see that d satisfies the triangular
inequality, and that a consensus sequence must be “in between” sequences.

Lemma 12. If there is Si, Sj such that d(Si, Sj) > 2d, then there is no
consensus sequence at distance d from both Si and Sj.

Proof. Suppose there is a sequence S such that d(S, Si) ≤ d and d(S, Sj) ≤ d.
Let P = {p1, . . . , p2d+1} be a set of 2d+1 positions on which Si and Sj differ.
Since S differs from Si to d position or less, there must be at least d + 1
position of P where S and Si are identical. This means that S differs from
Sj at these d+ 1 position, a contradiction.

The branching strategy will be as follows. We will start with the sequence
S1 (this choice is arbitrary). By the above lemma, we know that d(S1, Sj) <
2d, and therefore that each Sj differs from S1 by at most 2d positions. If
d(S1, Sj) ≤ d for every Sj , we are finished. Otherwise, let’s take Sj such
that d(S1, Sj) > d. Let P be the positions where S1 and Sj differ. If there
is a consensus sequence S, at least one of the positions i ∈ P must be such
that S[i] = Sj [i]. We know that there are at most 2d such positions, so we
branch in each of them. This results in 2d branches, each giving a sequence
S′ with a position different from S1 in 1 place. We repeat with S′, but since
each change takes us away from S1, we cannot repeat more than d times. If
we reach a point where d(S′, Sj) > 2d for a certain Sj , we know that it is
impossible to apply d modifications to S′ to reach a consensus sequence at
a distance at most d from Sj . In this case, we can exit.

The pseudo-code that describes this procedure can be found below. We
keep the original d, but we retain the number of modifications still allowed
with d rest. We also keep the current consensus candidate sequence S′.
Initially, d rest = d and S′ = S1.

CHAPTER 9. BRANCHING ALGORITHMS 77

fonction seqConsensus(S1, . . . , Sn, d, d rest, S
′)

if d rest < 0 then
return null

end
if d(S′, Sj) > 2d for a certain Sj then

return null
end
if d(S′, Sj) ≤ d for any Sj then

return S′

end
Let Sj such that d(S′, Sj) > d
Let P be the positions where S′ and Sj differ
foreach i ∈ P do

S′′ = S′

S′′[i] = Sj [i]
S∗ = seqConsensus(S1, . . . , Sn, d, d rest− 1, S′′)
if S∗ 6= null then

return S∗

end

end
return null

It is not trivial to guarantee that this algorithm works, i.e. it always
returns a solution if there is one, and null if not. The main ideas have
been stated above, and we leave it to you to demonstrate this fact. The
complexity can be analyzed as follows. We branch in |P | possible cases,
and we know that |P | ≤ 2d. The depth of the tree is bounded by d, so the
recursion tree has O((2d)d) nodes. Each call takes a time O(n2), most of
the time being in distance calculations with S′. The complexity is therefore
O((2d)d · n2).

Chapter 10

Kernelisation

Kernelization aims at transforming a given instance into another equivalent
but smaller instance. The size of the equivalent instance must in fact be
O(f(k)) for an arbitrary f function. For example, suppose we are given an
instance G = (V,E) of VERTEX-COVER with n vertices. Let’s say that
we manage to transform G into a G′ graph such as :

• |V (G′)| ≤ 2k;

• G has a VERTEX-COVER of size k if and only if G′ has a VERTEX-
COVER of size k.

We can therefore work on the G′ graph, because the existence of a solu-
tion on G′ is equivalent to the existence of a solution on G′. Moreover, since
|V (G′)| ≤ 2k, one can make a simple brute force on all subsets of V (G′),
which would list O(22k) subsets. Assuming that the transormation takes a
polynomial time, we thus have an FPT algorithm.

If such a G′ exists, it is said to form a kernel. The important thing is
that a kernel is equivalent to the original instance, and that it is of a size
bounded by f(k). Once a kernel is found, we know that our problem is FPT
because a brute force on the kernel will take an FPT.

In practice, it is common to combine techniques to speed up algorithms.
First we transform our instance into a kernel, then we execute for example
a branching algorithm, but on the kernel. Whenever possible, this results
in much more efficient algorithms in practice (though not in theory most of
the time).

78

CHAPTER 10. KERNELISATION 79

10.1 Defining a kernel

Let P be an algorithmic problem and let (I, k) be a parameterized instance
of P . Another instance (I ′, k′) of P is said to be a kernel of (I, k) if the
following conditions are satisfied:

1. |I ′| ∈ O(f(k)) for a function f , where |I ′| is the size of the I ′ instance;

2. k′ ∈ O(g(k)) for a function g;

3. (I, k) admits a solution if and only if (I ′, k′) admits a solution;

4. it is possible to transform (I, k) into (I ′, k′) in time O(|I|c), where c is
a constant.

In words, we want to transform I into an instance I ′ of size bounded
by a function of k, allowing the brute force on I ′ in FPT time. Note that
the time required to perform the transformation must not be exponential in
k. The spirit of kernelization is to provide a pre-processing procedure that
can be followed by an FPT algorithm. Having an exponential time in k to
create an equivalent instance would still result in an FPT algorithm, but
the instance would not be considered as a kernel.

Note also that one can modify the k′ parameter associated with I ′, as
long as k′ is also bounded by a k function. Finally, we ask that (I ′, k′)
be equivalent to (I, k). A counter-intuitive fact is that the solutions (I, k)
and (I ′, k′) may have nothing to do with each other. Kernelization thus
allows us to decide whether (I, k) admits a solution or not, but a solution
for (I ′, k′) may not be a solution for (I, k). Sometimes it is necessary to
apply an inverse transformation to the solution for (I ′, k′). However, this is
not required, because only the equivalence between the existence of solutions
is required.

How to find a kernel? With reduction rules!

The construction of the kernel depends on the k parameter. Most of the
time, we take our I instance and start an argument of the style

“If it’s true that there is a k size solution, then we can’t have more than
[...] in our instance.”

CHAPTER 10. KERNELISATION 80

or

“If it’s true that there is a solution of k size, then we can eliminate ... from
our instance.”

and all that remains to be done is to fill in the [...]. Another way of
presenting these arguments is also to contrast:

“If we have more than [...] in our instance, then there is no solution of size
k and we can return null”.

The general idea is therefore to assume that there is a solution of size k,
and to identify the important properties of our instance. These properties
should then allow us to reduce our instance. This often takes the form of
a set of reduction rules, which are statements like “if I has X property,
then delete Y”. Of course, we need to show that our reduction rules are
valid, i.e. that they preserve equivalence.

All this may sound very abstract, so let’s move on to examples. As usual,
we’ll use VERTEX-COVER to begin.

10.2 Kernelization of VERTEX-COVER

Let G = (V,E) an instance of VERTEX-COVER with parameter k, the size
of the solution. We start by asking if some operations are forced when we
suppose that there is a cover of k vertices.

If we think about it long enough, we notice the following observation.

Observation 1. If there is u ∈ V such that |N(u)| > k, then any VERTEX-
COVER of size k or less contains u.

Proof. If a solution X does not contain u, then we must include all the
vertices of N(u) to cover the edges incident to u. It is then impossible that
|X| ≤ k because |N(u)| > k and N(u) ⊆ X.

We can deduce from this a very simple rule, which is completely deter-
ministic and which avoids branching into to several cases.

CHAPTER 10. KERNELISATION 81

Rule 1. If there is u ∈ V such that |N(u)| > k, delete u and its edges by
G and reduce k by 1. .

This rule reduces the number of vertices of G and also reduces k. Of
course, it must be argued that by applying the rule, one obtains an equivalent
instance. When this is the case, we say that the rule is safe.

Lemma 13. Rule 1 is safe.

Proof. Let G be a graph and let G′ be the graph obtained after applying
rule 1 by deleting u. It must be shown that G has a VERTEX-COVER of
size k if and only if G′ has a VERTEX-COVER of size k − 1.

If G has a VERTEX-COVER X of size k, then according to the above
observation, we know that u ∈ X. Therefore, X \ {u} must cover all non-
incident edges at u, and therefore X \ {u} is a VERTEX-COVER of size
k − 1 of G′.

In the other direction, that is X ′ is a VERTEX-COVER of size k− 1 of
G′. All edges of G are covered by X ′, except perhaps some incidental to u.
Adding u to X ′ gives a VERTEX-COVER of size k or less.

To create our kernel, we apply rule 1 until it is no longer possible. This
results in a G′ graph in which each vertex u satisfies |N(u)| ≤ k′, where
k′ is the resulting parameter after applying the rules. To simplify, we will
assume that our graph is called G and that its parameter is k, and that rule
1 is no longer applicable.

Knowing that each u ∈ V (G) has at most k neighbors, we observe that
if we include u in X, then u can cover only k edges. This leads to a second
observation.

Observation 2. Suppose Rule 1 does not apply to G. Then if |E(G)| > k2,
there is no solution of size k.

Proof. If rule 1 does not apply, then each u in a X solution covers at most k
edges. But if |E(G)| > k2, k vertices will not be enough to cover all edges,
because together they cover a maximum of k2 edges.

We can therefore assume that |E(G)| ≤ k2. What about the number
of vertices? There is no limit, because it is possible that G contains many
isolated vertices. It is not difficult to see that we can derive another sound
rule.

Rule 2. If G contains u ∈ V (G) such that |N(u)| = 0, then remove u from
G.

CHAPTER 10. KERNELISATION 82

Knowing that G has at most k2 edges and no isolated vertex, we can
limit the number of vertices. It can be show that the maximum number
of vertices with k2 edges is reached if each vertex has only one neighbor.
This happens when the graph is in fact a matching, in which case it has 2k2

vertices. We deduce the following result.

Theorem 23. VERTEX-COVER admits a kernel with at most 2k2 vertices
and at most k2 edges.

Note that the X set is not used. However, it contains all the vertices
that should be part of a cover and are no longer in the kernel. The purpose
of X is to rebuild a concrete solution. Once a X ′ solution for the kernel has
been found, we know that X ′ ∪X is a solution for the original G. The X is
therefore optional.

10.3 A trivial kernel for MAX-3-SAT

Recall the MAX-3-SAT problem, where the goal is to maximize the number
of satisfied clauses of size 3.

MAX-3-SAT
Input : clauses C1, . . . , Cm with three variables each, on variables
x1, . . . , xn
Parameter : k, the number of clauses satisfied
Output : an assignment of xi such that at least k clauses are
satisfied, or null if non-existent

We remember the probabilistic algorithm for MAX-3-SAT that returned
an assignment that, in expectation, satisfied at least 7m/8 clauses. Our
derandomization procedure such an assignment in a deterministic way.

We can use this for the parameterized version of MAX-3-SAT. If k ≤
7m/8, we automatically know that an assignment exists and we know how
to find one. If k > 7m/8, then m < 8k/7 and the number of clauses is
bounded by a k function. We still have to make sure that the number of
variables is also bounded. This is simple: since each clause has 3 literals, we
know that the number of variables is at most 3m < 24k/7 (we can eliminate
useless variables). So we deduce an almost trivial kernel from the following
algorithm:

CHAPTER 10. KERNELISATION 83

fonction max3satKernel(C1, . . . , Cm, k)
if k ≤ 7m/8 then

Return the result of the malfunction for MAX-3-SAT
else

Eliminate variables that do not appear in any clause
return C1, . . . , Cm

end

The discussion preceding the algorithm gives us :

Theorem 24. The max3satKernel algorithm gives a kernel for MAX-3-
SAT with at most 8k/7 clauses and at most 24k/7 variables.

10.4 A kernel for MAX-SAT

Let’s now consider the general version of MAX-SAT, where the number
of variables per clause is arbitrary. We know that by choosing a random
assignment, each clause is satisfied with probability at least 1/2 (the worst
case being a clause with only one variable). We can therefore design a
probabilistic algorithm that returns an assignment that satisfies m/2 clauses
in expectation. This algorithm can be derandomized to return such an
assignment deterministically.

We can thus assume that if k ≤ m/2, we always return an assignment
satisfying at least k clauses. This can be expressed with a rule.

Rule 1. If k ≤ m/2, return an assignment that satisfies m/2 clauses (with
a derandomization algorithm, for example).

Now assume that k > m/2. So we have m < 2k. Now we have to limit
the number of variables.

If each clause had say k variables, we could limit the number of useful
variables by 2k·k. On the other hand, some clauses may have many variables.
Let Cp be clauses with k variables or less, and Cg be clauses with more than
k variables (p for “petit” and g for “gros”). We would like to get rid of Cg.

If |Cg| > k, it is not difficult to see that we can satisfy k clauses of Cg.
Just choose k clauses of Cg and choose a different variable for each Ci ∈ Cg

(this is possible because they all have more than k variables). We assign
each chosen variable to satisfy its corresponding clause, and voilà!

CHAPTER 10. KERNELISATION 84

Rule 2. If |Cg| > k, return an assignment that satisfies each clause of Cg

(for example by choosing one variable per clause).

So we can assume that |Cg| < k. Note that it is possible to satisfy all
|Cg| clauses of Cg with |Cg| variables (as above, we choose one variable per
clause). Could we simply eliminate the “big” clauses by assuming that we
are going to satisfy them with |Cg| variables? As it turns out, yes.

Rule 3. Remove clauses Cg and reduce k by |Cg|

The idea of rule 3 is that if we can satisfy k − |Cg| “small” clauses, we
need at most k − |Cg| variables to do so. The |Cg| other variables can be
used to satisfy Cg. This rule is non-trivial, and we still need to demonstrate
that it works.

Lemma 14. If rules 1 and 2 have been applied, then rule 3 is safe. That is,
one can satisfy k clauses of C1, . . . , Cm if and only if one can satisfy k−|Cg|
clauses of Cp.

Proof. (⇒) suppose that one can satisfy k clauses among C1, . . . , Cm. There
must be k − |Cg| clauses among Cp that are satisfied.

(⇐) Let us suppose that we can satisfy l = k − |Cg| clauses among Cp.
Let C1, . . . , Cl be these satisfied clauses. Note that it is possible to satisfy
them by assigning only l variables (because only one variable is enough to
satisfy a clause). It is possible to retrieve l such variables if we already have
an assignment, but this is not necessary for the purposes of the lemma. If
we know these l = k− |Cg| variables used to satisfy C1, . . . , Cl, we can then
use |Cg| additional variables to satisfy all Cg clauses.

We deduce a kernel of quadratic size.

Theorem 25. Rules 1,2 and 3 lead to a kernel for MAX-SAT with O(k)
clauses and O(k2) variables.

Proof. We assume that k > m/2, otherwise we return the result of an ap-
proximation algorithm (rule 1). So m < 2k ∈ O(k). Then, if rule 2 applies,
we solve the problem trivially. If not, we apply rule 3. Thus we have a set
of Cp clauses of size at most 2k, and each clause has at most k variables.
The number of variables involved in total is therefore O(k2).

CHAPTER 10. KERNELISATION 85

10.5 A kernel for EDGE-CLIQUE-COVER

We will see that cores can sometimes have an exponential size. In the EDGE-
CLIQUE-COVER problem, we want to cover all the edges with cliques.

EDGE-CLIQUE-COVER
Input : a graph G = (V,E).
Parameter : k, the number of cliques
Output : a set of k cliques C1, . . . , Ck such as for any uv ∈ E,
there is Ci such that u ∈ Ci and v ∈ Ci.

Note that there could be less than k cliques covering each edge. In this
case, one can return exactly k cliques by repeating the same click several
times.

Let’s start with a very simple rule that is easily demonstrable as sound.

Rule 1. If there is u ∈ V (G) such that |N(u)| = 0, then remove u from G.

Another simple rule is that if a connected component is a clique, we
can’t do better than including that clique to cover its edges.

Rule 2. If there is a connected component C of G such that C is a clique,
then include C in our solution and decrement k by 1.

Two vertices u and v are twins if N(u)∪{u} = N(v)∪{v}. In particular,
twins must be neighbors. For all intents and purposes, twins are “identical”
and we can keep only one.

Rule 3. If rule 2 does not apply to G and G contains two twins u and v,
then remove u from G.

To see that this rule is safe, we see that we can always put u and v in the
same cliques. The formal proof is left in exercise. As observed in class,
we note that it is necessary to apply rule 2 before rule 3. Otherwise, with a
connected component that is a clique, we would eliminate all its twins and
we would end up with a single vertex. The latter would be eliminated and
we would never have counted the clique.

Perhaps surprisingly, that’s all it takes to have a kernel.

Theorem 26. Let G′ be the graph obtained from G after applying rules 1,

CHAPTER 10. KERNELISATION 86

2 and 3 until it is no longer possible. Assume that G′ admits an edge clique
cover of size at most k. Then G′ has at most 2k vertices.

Proof. Let C1, . . . , Ck be a set of k cliques that cover each edge of G′. Let
u ∈ V (G′). We associate to u a vector bu of k bits, where the i bit of bu is 1
if u ∈ Ci, and 0 otherwise. Note that there are 2k bit vectors possible. We
want to show that all vertices have a different bit vector. Let u, v ∈ V (G′)
be two distinct vertices and suppose that bu = bv. If bu (or bv) has only 0,
then u has no neighbors and rule 1 should have been applied. Otherwise,
the fact that bu = bv implies that u and v are neighbors because they are in
a common clique. Also, any neighbor of u appears in one of the cliques and
so does v. Moreover, these neighbors appear in the same cliques. It follows
that u and v are twins and one of them should have been eliminated by rule
3, a contradiction.

We deduce that each vertex of G′ has a different vector of bits, so there
are at most 2k vertices.

A corollary of the previous theorem is that if there are more than 2k

vertices in V (G′), we can immediately return null. Concretely, the kernel-
ization algorithm is as follows.

fonction eccKernel(G = (V,E), k)
if G has a vertex u of degree 0 then

return eccKernel(G− u, k)
else if G has a connected component C that is a clique then

return eccKernel(G− C, k − 1)
else if G has distinct twins u and v then

return eccKernel(G− u, k)

else if |V | > 2k then
return null

else
return G

end

Note that under certain assumptions of complexity (the Strong Expo-
nential Time Hypothesis, for the connoisseurs), it has been shown that it is
impossible to obtain a kernel smaller than 2k. So there are strong reasons
to believe that some kernels cannot be of polynomial size.

CHAPTER 10. KERNELISATION 87

10.6 A kernel for VERTEX-COVER based on LPs

Let’s go back to our favorite problem, VERTEX-COVER. We got a kernel
of size O(k2), but it turns out that it is possible to get one of size 2k using
an LP. Let’s recall the LP of VERTEX-COVER

Minimize ∑
vi∈V

xi

Subject to

xi + xj ≥ 1 for each vivj ∈ E
0 ≤ xi ≤ 1 for every vi ∈ V

Suppose we have solved this LP and have obtained a solution x∗ =
{x∗1, . . . , x∗n}. Since the LP gives a lower bound on the size of the solution,
we can immediately use the following rule.

Rule 1. If
∑

vi∈V x
∗
i > k, return null. .

To go a little further, we can separate our vertices into three sets:

V0 = {vi ∈ V : x∗i < 1/2}
V 1

2
= {vi ∈ V : x∗i = 1/2}

V1 = {vi ∈ V : x∗i > 1/2}

Intuitively, the vertices of V1 have the most weight and it is reasonable to
believe that they should be in an optimal cover. Similarly, V0 have a small
weight and should not have to be included. It turns out that this intuition
is true.

Lemma 15. There is a vertex cover X ⊆ V of minimum size such that
V1 ⊆ X ⊆ V 1

2
∪ V1.

In words, the lemma says that we don’t need the V0 vertices in our
solution. Moreover, we can assume that all the vertices of V1 are in the
solution. We are not going to prove this lemma - a proof can be found in
Cygan’s book & al. However, we can extract a very simple rule from it.

Rule 2. Remove V0 from G, add V1 to the solution, and reduce k by |V1|. .

CHAPTER 10. KERNELISATION 88

Lemma 16. Rule 2 is safe.

Proof. Let G′ be the graph obtained after applying rule 2. It must be shown
that G has a vertex cover of size k if and only if G′ has a vertex cover of
size k − |V1|.

(⇒) Let X be a vertex cover of G of size k. By the lemma 15, we can
assume that V1 ⊆ X. So there must be k − |V1| vertices in X to cover the
remaining edges in G′.

(⇐) Let X ′ be a vertex cover G′ of size k−|V1|. In G, only the incidental
edges of V0 and V1 remain to be covered. Let X = X ′ ∪ V1. Then the edges
incident to V1 are covered. Let vi ∈ V0 and vivj ∈ E. Since vi ∈ V0, we have
x∗i < 1/2 and we need x∗j > 1/2 to satisfy the LP constraint. So vj ∈ V1 and
X covers vivj .

With the right analysis, this leads directly to a kernel.

Theorem 27. Let G′ be the graph obtained after applying rules 1 and 2.
Then G′ has at most 2k vertices.

Proof. Since rule 2 does not apply, x∗i =1/2 for any vi ∈ V (G′). We have

|V (G′)| = |V 1
2
| =

∑
vi∈V 1

2

2x∗i ≤ 2
∑

vi∈V (G)

x∗i ≤ 2k

where we used rule 1 to deduce that
∑

vi∈V (G) x
∗
i ≤ k.

10.7 Do all FPT problems have a kernel?

It is possible to demonstrate that a problem is in FPT if and only if it admits
a kernel. For some, FPT could even have been defined by the existence of a
kernel, and the aspect of parameterized complexity would have been only a
consequence.

Theorem 28. A P problem is in FPT if and only if P admits a kernel.

Proof. (⇐) Let’s start with the easy direction. Let (I, k) be an instance of
P and suppose that we can find a kernel of size O(f(k)) with parameter
k′ ∈ O(g(k)) in time O(|I|c). A brute force on the kernel will give an
algorithm O(h(k′, f(k))) for a certain function h. Whatever h, we will have
h ∈ O(h2(k)) for a certain function h2. The algorithm that creates the
kernel and executes the brute force takes a time O(h2(k) + |I|c), which is
FPT.

CHAPTER 10. KERNELISATION 89

(⇒) Let’s assume that P is FPT and that we can solve any instance (I, k)
in time O(f(k)|I|c) with a certain algorithm A. We build a kernel with an
alternative B algorithm. Initially, B executes A during d|I|c+1 instructions,
where d is the hidden constant in the O of O(f(k)|I|c), and looks to see
if A has finished. If so, then B returns the result of A, which took B a
polynomial time (so no kernel is needed).

If A has not finished, then the time required by A, which is df(k)|I|c, is
greater than d|I|c+1. So,

df(k)|I|c > d|I|c+1

which implies that
f(k) > |I|

Since |I| < f(k), the size of our instance is bounded by k and is therefore
a kernel.

Note that the construction of a kernel in the above proof is not very
useful in practice. It only executes a known FPT algorithm, so what is
the use of the kernel of this algorithm if it can already solve the instance?
The real use of kernels is usually to allow a simple and fast reduction of an
instance, and then apply a more sophisticated FPT algorithm.

Chapter 11

Tree decomposition and
treewidth

The treewidth is a parameter on graphs that determines how “close” the
graph is to being a tree. Trees admit polynomial time algorithms over a
wide range of problems. By generalizing, one can expect that a graph close
to a tree admits algorithms close to being polynomial. The tree algorithms
use, for the most part, a dynamic programming approach. We will start with
some examples on trees, then generalize to graphs with bounded treewidth.

11.1 Dynamic programming on trees

Let T = (V,E) a rooted tree. Recall that a tree is a connected graph without
a cycle. An equivalent definition of a tree is a connected graph with exactly
n− 1 edges. We denote the root by r(T). For v ∈ V , the sub-tree rooted at
v is denoted by T [v].

Dynamic programming on a tree usually proceeds as follows. We need to
optimize a certain criterion, and we determine a certain set of information
I(v) to be computed at each node v ∈ V , where I(v) allows us to compute
an optimal solution on T if it is known at each vertex (or at least at the
root).

The information I(v) must be computable from the I(v1), . . . , I(vk) of
the children v1, . . . , vk of v. Often, I(v) is expressed by a recurrence function
that depends on the I(vi).

The general form of dynamic programming on a tree is therefore as
follows:
– for each v ∈ V knot in a post-order traversal – – let v1, . . . , vk be the

90

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 91

children of v
– – calculate I(v) using the values I(v1), . . . , I(vk)

Most of the time, calculating I(v) on a v leaf is straightforward. It is at
the internal nodes that there is sometimes a complication. More concretely,
we usually have a recursive procedure:

fonction progDynTree(T = (V,E), v)
//v is the current node
if v is a leaf then

Calculate I(v) trivially
else

foreach child vi of v do
progDynTree(T, vi)

end
Calculate I(v) (knowing the I(vi))

end

The initial call is made with v = r(T), the root. It is also necessary to
specify how the optimal solution is calculated from I(v) (which is usually
done outside the algorithm).

Let’s see some examples.

11.1.1 Independent set in a tree

Recall that a set X ⊆ V is independent if uv /∈ E for any u, v ∈ X. We
are looking for the maximum size independent set. This is of course NP-
complete, but not on trees.

Suppose we get a rooted tree T = (V,E). For each v ∈ V , we will
calculate the following information:

• M0[v] : the size of a maximum independent set X of T [v], with the
constraint that v is not in X;

• M1[v] : the size of a maximum independent set X of T [v], with the
constraint that v must be in X.

Suppose we know M0[v] and M1[v] for each v ∈ V . Then the optimal
solution on the whole tree is given by max(M0[r(T)],M1[r(T)]). This is

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 92

because there are two possibilities for the independent set on T = T [r(T)]:
either the root is in the set or not, and we know the optimal in both cases.

But how to compute M0[v] and M1[v]? If v is a leaf, this is easy. We
have

M0[v] = 0 M1[v] = 1

that correspond to not include or include v.
If v is an internal node, if we decide not to include v, then we can take

the optimal solutions from the child sub-trees and take the union. We will
always have an independent set because we are not going to include two
nodes that share an edge in the union. The optimal solution in subtree
T [wi] is given by max(M0[wi],M1[wi]). So we have

M0[v] =
∑

wi∈child(v)

max(M0[wi],M1[wi])

If we decide to include v, then we cannot include a child of v, otherwise
we would not have an independent set. We must therefore count 1 for the
addition of v, plus the optimal of the child subtrees that do not include a
child. So we have

M1[v] = 1 +
∑

wi∈child(v)

M0[wi]

The complete algorithm is therefore as follows.

fonction maxIndSet(T = (V,E), v)
//v is the current node
if v is a leaf then

M0[v] = 0
M1[v] = 1

else
M0[v] = 0
M0[v] = 1
foreach child wi of v do

maxIndSet(T,wi)
M0[v]+ = max(M0[wi],M1[wi])
M1[v]+ = M0[wi]

end

end

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 93

The initial call is made with v = r(T), and we return max(M0[r(T)],M1[r(T)]).
Note that the “if” was not necessary, because M0 and M1 are initialized

the same way whether we have a sheet or not.

11.1.2 VERTEX-COVER on a tree

The complement of a maximum independent set is a VERTEX-COVER, so
a simple algorithm to return the minimum size of a vertex cover is to run the
above algorithm, get a value k, then reoturn n− k. One can also formulate
dynamic programming using the same principles.

For v ∈ V , we write M0[v] for the size of a minimum vertex cover X such
that v ∈ X, and M1[v] when v ∈ X. For v a leaf, we still have M0[v] =0
and M1[v] =1.

If v is an internal node, if we don’t include v, we must include each child
of v to cover the edges. So

M0[v] =
∑

wi∈child(v)

M1[wi]

If we include v, we do what we want with the children, and therefore

M1[v] = 1 +
∑

wi∈child(v)

min(M0[wi],M1[wi])

(we take the min because here we minimize). The searched final value is
min(M0[r(T)],M1[r(T)]).

The algorithm is almost identical to the one above. In fact, this type of
algorithm is often given only by recurrences, because they can be translated
directly into the algorithm in a standard way. For the rest, we will therefore
give the recurrences only. Let’s see a last example.

11.1.3 Assigning characters in a phylogeny

We have a tree T = (V,E) in which each leaf l is assigned to a character
c(l). The character is part of an alphabet Σ. We have a transformation cost
function f(a, b) which represents the cost of transforming the a character
into b, where a, b ∈ Σ. We assume that f(a, b) = f(b, a). The goal is to
assign to each internal node a character so as to minimize the sum of the
costs on each edge. Put another way, given c(l) to the leaves, we try to
assign c(v) for each internal node, so as to minimize

∑
uv∈E f(u, v). This

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 94

is useful in bioinformatics to reconstruct the evolution of ancestral species
(the internal nodes) when only today’s species (the leaves) are known.

For each node v ∈ V and each character a ∈ Σ, we calculate Ma[v] which
is the minimum possible cost in T [v] knowing that c(v) = a.

If v is a leaf, we have

Ma[v] =

{
1 if a = c(v)

∞ si a 6= c(v)

Otherwise, if v is an internal node, we will take the minimum in the child
subtrees by adding the cost of the edges. The main observation is that we
don’t need to test every possible combination in the children. We can take
the minimum in each child independently. In short, we have

Ma[v] =
∑

wi∈child(v)

min
b∈Σ

(f(a, b) +Mb[wi])

In the end, we return mina∈ΣMa[r(T)]. In exercise, write the pseudo-
code that implements this recurrence.

11.2 Tree decomposition and treewidth

We would like to use the techniques described above on a graph G = (V,E),
not just on a tree. To do so, we would have to find some kind of tree
representation of G. After much research effort, a representation that fits
very well with dynamic programming was found.

Given a G = (V,E) graph, the idea is to

• define subsets of vertices B1, B2, . . . , Bp ⊆ V , called bags. These sets
can have a non-empty intersection, and p must be polynomial in n.
We can even assume that p ∈ O(n).

• build a tree T = (VT , ET) in which VT = {B1, . . . , Bp}.

The T tree must satisfy certain properties for dynamic programming to
be applicable.

Let G = (V,E) be a graph. It is assumed that G has no isolated vertex.
Let T = (VT , ET) a tree with VT = {B1, . . . , Bp}. We say that T is a tree
decomposition of G = (V,E) if all the following conditions are satisfied:

1. for each Bi ∈ VT , Bi ⊆ V (the Bi are bags);

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 95

2. for each uv ∈ E, there is Bi ∈ VT such that u ∈ Bi and v ∈ Bi (each
edge is in at least one bag);

3. for each v ∈ V , then the bags containing v form a connected sub-
graph of T . More formally, let Bv

1 , . . . , B
v
q be the T bags that contain

v. Then the subgraph of T on the vertices Bv
1 , . . . , B

v
q is connected.

The size of the T decomposition is maxBi∈VT
|Bi| − 1. The treewidth of

G is the minimum size of a decomposition of G.
In other words, there are many tree decompositions for a graph G. We

are looking for the one in which the largest bag is the minimum size.
These conditions may seem abstract at the moment. It is difficult to give

an intuition as to their purpose. The idea is that these conditions allow us
to say that a node in the T decomposition tree is a bag Bi that separates
the graph into two or more independent parts, where the parts do not share
any edges except those in Bi. These conditions are necessary to ensure this,
and play a role in dynamic programming.

11.3 Some examples

It is generally difficult to obtain a minimum decomposition of a graph. It is
in fact NP-complete to calculate it. However, we can look at a few simple
examples.

11.3.1 Tree decomposition of a tree

If G = (V,E) is a tree, then tw(G) = 1. This is because we can take the
decomposition T = (VT , ET) in which VT = {{u, v} : uv ∈ E}. It is assumed
that G is rooted in a leaf ` (otherwise we reroot). Then we add an edge in
ET between {u, v} and {v, w} if and only if u is the parent of v and v is the
parent of w. The size of this decomposition is maxuv∈E |{u, v}| − 1 = 1.

It is clear that ∀uv ∈ E, there is a Bi containing u and v.
We must show that for any v ∈ V , the bags containing v form a connected

subgraph of T . This is obvious for a leaf because only one bag contains it.
Otherwise, for an internal node v, these bags are the edges containing v.
There is the edge-bag {u, v} where u is the parent of v, and the edge-bags
{v, vi} for each vi ∈ child(v). In T , these bags are linked because the {v, vi}
have an edge with {u, v}, so it’s connected.

To show that T is a tree, we have to argue that T is connected and
has no cycle. It is easy to see that T is related because G is related (to

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 96

be proved in exercise). Moreover, if we assume that T has a cycle, it has
the form ({u1, u2}, {u2, u3}, . . . , {uk−1, uk}, {uk, u1}), where each ui is the
parent of ui+1. This means that in G, we have the cycle (u1, u2, . . . , uk, u1),
contradicting that G is a tree.

11.3.2 Tree decomposition of a cycle

Suppose that G = (V,E) is a cycle (v1, v2, . . . , vn, v1). We can show that
tw(G) =2. We can obtain a decomposition into a tree of size 2 (so with bags
of size 3 or less).

First we choose v1 arbitrarily. Let G− v1, i.e. the graph obtained from
G by removing v1. We see that G− v1 is a tree with vertices v2, . . . , vn. As
seen above, we can obtain a decomposition T ′ = (V ′T , E

′
T) for G− v1 where

the bags are all of size 2. Now, if we add v1 to all the bags of T ′, we get a
decomposition for G. This is because the edges containing v1 will certainly
be in one of the bags, and because the bags containing a vi form a connected
subgraph.

11.3.3 Tree decomposition of a clique

Let’s assume that G = (V,E) is a clique of size n. It turns out that tw(G) =
n− 1, because essentially, the only way to decompose G is to have a single
bag with V as a whole.

To demonstrate this, suppose that G can be decomposed into a tree
T = (VT , ET) where all bags of VT have n−1 elements or less. Let Br be the
largest bag of T . We can assume that Br is the root of T . Since |Br| ≤ n−1,
there is v ∈ V such that v /∈ Br. Now, let Bv be the closest descendant of
Br that contains v. Since the bags containing v form a connected graph,
all bags containing v descend from Bv. Also, since Br is maximum, there
must be w such that w ∈ Br but w /∈ Bv. Since bags containing w form a
connected graph, no descendant of Bv contains w. This implies that there
is no bag that contains both v and w.

It is therefore not a valid decomposition, because vw is an edge of the
clique and each edge must be contained in a bag.

We deduce that there must be a bag of size n in any decomposition of a
clique.

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 97

11.4 Basic results

In the cycle decomposition described above, a vertex v was removed, the
decomposition of G − v was obtained, and v was added to all bags. This
procedure can be generalized to any graph and any vertices removed.

Theorem 29. Let G = (V,E) a graph and X ⊆ V . Then tw(G) ≤ tw(G−
X) + |X|.

We are not going to prove this theorem. The idea is simple. If we take a
minimum decomposition of G−X, we can add X to all the bags and prove
that we satisfy all the conditions.

Theorem 30. Let G = (V,E) and X a clique with a maximum size of G.
Then tw(G) ≥ |X|−1.

Proof. Suppose that tw(G) < |X|−1. Then there is a decomposition T =
(VT , ET) where each bag has at most |X| − 1 elements. By removing the
vertices that are not part of X from these bags, we get a decomposition for
X of size |X| − 1 or less. This contradicts the fact that the X clique has
treewidth |X|−1.

This fact can be very useful in practice. Several problems on graphs can
be solved in time O(ctw(G) · nc). If the graphs in your application have a
small treewidth, such an algorithm can be very efficient. On the other hand,
if you have reason to believe that your graphs have very large cliques, you
can immediately discard the option of using a tree decomposition.

A final result, possibly less useful in practice but still very interesting, is
that tw(G) is equivalent to the “cops vs. robbers” parameter.

In the game of cops versus robbers, we have a graph G = (V,E)
and a thief placed on a vertex of G. There are also k policemen who are
in helicopters, and a helicopter can be either flying or parked on a vertex.
The thieves and policemen take turns. In one turn, a thief can move to any
accessible vertex without passing a vertex occupied by a policeman. Then, a
policeman can either take off (if parked), or land at an arbitrary summit (if
flying). The goal is to find out if it is possible for the police to get to a point
where all the vertices neighboring the thief are occupied by police officers.
The cops vs robbers number is the minimum k such that k policemen are
enough to catch the thief.

It turns out that the cops vs robbers number in G is equal to tw(G) + 1.
In a sense, the cops vs robbers problem is equivalent to calculating the
treewith of a graph.

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 98

11.5 Algorithms on tree decomposition

For an algorithm designer, the most important element of the treewidth
concept is the tree decomposition. A classical result in FPT states that if
a graph has a treewidth k, then we can find a tree decomposition in time
O(kO(k3)) (other approximation results of the treewidth in FPT time are
also known). Moreover, the number of nodes in the decomposition is linear
and the tree is binary (remember that binary means that each internal node
has 2 children). The proof of this theorem is deep and we will use it in a
black box for our purposes.

Theorem 31. Let G be a graph such that tw(G) = k. In time O(kO(k3)), it
is possible to find a tree decomposition of G width k with O(|V |) nodes.

We can assume that such an algorithm has been executed and that a
decomposition is given to us. All that remains is to use it to solve our
problems.

To do this, we do a bit like in dynamic programming on a tree, but
knowing that the vertices represent bags, therefore subsets of V . The fun-
damental point is that the size of the bags is bounded by tw(G) + 1. When
one reaches a Bi bag, one can thus store information on each subset of Bi,
or on each permutation of Bi.

11.6 Maximum independent set

As a first example, let’s consider MAX-INDSET parameterized by the treewidth.
Recall that a set X is independent if ∀u, v ∈ V , uv /∈ E.

MAX-INDSET
Input : graph G = (V,E)
Parameter : tw(G)
Output : an independent set X ⊆ V maximum size.

Suppose we are given a tree decomposition T = (VT , ET) of G. We can
assume that T has O(|V |) nodes. For Bi ∈ VT a bag, we recall that Bi ⊆ V
and that |Bi| ≤ tw(G) + 1. We denote by T [Bi] the sub-tree of T rooted at
Bi. In addition, we denote by

Vi =
⋃

Bj∈V (T [Bi])

Bj

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 99

the set of G vertices that are present in T [Bi].
We would like to store the information used to find a maximum indepen-

dent set in G[Vi], the subgraph induced by Vi. A classical way is to compute
a table M [S,Bi] for each Bi ∈ V (T) and each S ⊆ Bi, such that M [S,Bi]
is the size of the maximum independent set X of G[Vi]. We can express
M [S,Bi] with a recurrence, but it becomes relatively complex.

Here, we prefer a more intuitive version that considers two-color colorings
of the vertices of G. For S ⊆ V , a coloring of S is a function c : S →
{green, red} which assigns a color green or red to each vertex of S. We can
see green as “is in the set independent” and red as “is not in the independent
set”. We denote by

cg

all the vertices colored in green.
We can see MAX-INDSET as the search for a coloring of V such that cg

is an independent set of maximum size. There are 2n colorings, which is too
much for an FPT algorithm, but the idea here is to try all possible colorings
for each Bi bag.

Let Bi ∈ VT and let ci a coloring of Bi. We define

M [ci, Bi]

as the maximum size of an independent X set of G[Vi], with the restriction
thatX∩Bi = cgi . We defineM [ci, Bi] = −∞ if such a set does not exist. This
seems to represent a lot of concepts, but note that it is only a generalization
of dynamic programming on a tree.

But how do you compute M [ci, Bi]? If Bi is a leaf of T , it is easy to see
that

M [ci, Bi] =

{
|cgi | if cgi is an independant set

−∞ otherwise

Let’s assume that Bi is an internal node. The idea will be to compute
M [ci, Bi] from the M [cj , Bj] of the children of Bi. Let Bj be a child of Bi

and let cj be a coloring of Bj . It is said that ci and cj are compatible if
ci(u) = cj(u) for any u ∈ Bi ∩Bj .

If cgi does not induce an independent set, we can put M [ci, Bi] = −∞
immediately. Otherwise, we can prove the following recurrence for M [ci, Bi]:

M [ci, Bi] = |cgi |+
∑

Bj∈child(Bi)

[
max

cj compatible with ci
(M [cj , Bj]− |cgi ∩ c

g
j |)
]

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 100

If we think about it long enough, this recurrence becomes intuitive. To
find an independent set of G[Vi] that contains cgi , one can combine indepen-
dent sets found in child subtrees. On the other hand, before combining these
independent sets, we want to make sure that their colorings are compatible
with what is requested by ci. The subtraction of |cgi ∩ c

g
j | is done to avoid

counting a green vertex more than once.
This is just a hunch. Usually it is necessary to demonstrate that such a

recurrence is correct, which often requires significant work.

Theorem 32. The recurrence for M [ci, Bi] above is correct.

Proof. To show that this recurrence is true, we will show that M [ci, Bi] is
smaller than or equal to the given expression, and that M [ci, Bi] is larger
than or equal to the given expression.

Let’s start with the first statement. Let X be a maximum independent
set of G[Vi] such that X ∩ Bi = cgi . Let Bj be a child of Bi in T . Let cj∗

be a coloring of Bj such that cj∗(u) = green if u ∈ X, and cj∗(u) = red
otherwise. It is clear that ci and cj∗ are compatible, because they come from
the same X set. If we consider Xj = X ∩ Vj , we have an independent set of
G[Vj] such that Xj ∩Bj = cgj∗ . By definition, |Xj | ≤M [cj∗ , Bj]. So we have

M [ci, Bi] = |cgi |+
∑

Bj∈child(Bi)

(|Xj | − |cgi ∩ c
g
j∗ |)

≤ |cgi |+
∑

Bj∈child(Bi)

(M [cj , Bj]− |cgi ∩ c
g
j∗ |)

≤ |cgi |+
∑

Bj∈child(Bi)

[
max
cj

(M [cj , Bj]− |cgi ∩ c
g
j |)
]

(or subtraction is done to avoid double counting).
In the other direction, let Bj1 , . . . , Bjl be the children of Bi. For each

Bjh , let Xjh be an independent set of G[Vjh] such that the coloring cjh
of Bjh corresponding to Xjh is compatible with ci, and which maximizes
|Xjh | − |c

g
i ∩ c

g
jh
|. We want to show that

X = cgi ∪Xj1 ∪ . . . ∪Xjl

is an independent set. Note that since the coloring cjh are all compatible
with ci, X ∩Bi = cgi . Suppose there are u, v ∈ X that share an edge. Then
u, v ∈ Bi is impossible because we first check that cgi induces an independent

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 101

set and X ∩ Bi = cgi . So, u ∈ Vjh for a child Bjh of Bi and u /∈ Bi. Since
bags containing u form a connected component of T , all occurrences of u
are in Bjh or below. Furthermore, since uv ∈ E, there must be a bag
Buv descending from Bjh such that u, v ∈ Buv. Thus, u and v both have
occurrences in Bjh or below. This would mean that u, v ∈ Xjh , which is
contradictory because Xjh is supposed to be an independent set of Vjh . So
our X is indeed an independent set.

Note that the size of X is given by |cgi |+
∑

Bjh

[
|Xjh | − |c

g
i ∩ c

g
jh
|
]
. This is

to subtract the intersections of the Xjh with cgi , and because the Xjh have in
common only elements of Bi (because of condition 3 of the decompositions).
Since the |Xjh | − |c

g
i ∩ c

g
jh
| are of maximum size, the size of X is less than

|cgi |+
∑

Bj∈child(Bi)

[
maxcj (M [cj , Bj]− |cgi ∩ c

g
j |)
]
, as desired.

11.7 Nice decompositions

As we have seen, recurrences on decompositions can become complex. One
way to (somewhat) simplify these recurrences is to simplify the decomposi-
tion itself.

Let G = (V,E) be a graph and T = (VT , ET) be a tree decomposition of
G. We say that T is a nice decomposition if:

1. each node Bi of T has 0, 1 or 2 children;

2. if a node Bi has 2 children Bl and Br, then Bi = Bl = Br.

In this case, Bi is called a Join Node.

3. if a node Bi has 1 child Bj , then one of these two cases occurs:

• Bi = Bj ∪ {v} for a certain v ∈ V . In this case, Bi is called a
Introduce Node.

• Bi = Bj \ {v} for a certain v ∈ Bj . In this case, Bi is called a
Forget Node.

The advantage of nice decompositions is that the content of a node Bi

compared to that of its children is simple, which allows us to simplify the
definition of recurrences at nodes Bi. The disadvantage is that we have to
deal with three cases for our recurrences: we have to describe a recurrence
according to the type of the Bi node, which could be a Join node, an
Introduce node or a Forget node.

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 102

An important fact is that we can always find a nice decomposition with-
out changing the size of the decomposition.

Theorem 33. Let G = (V,E) a graph. If we are given a tree decompo-
sition T ′ = (V ′T , E

′
T) of G size tw(G), we can transform T ′ into a nice

decomposition of size tw(G) in polynomial time.

11.8 MAX-INDSET and nice decomposition

Let’s take the MAX-INDSET problem again, but suppose that T = (V, T)
is nice. We take again the notions of coloring and compatibility between
colorings.

Recall that M [ci, Bi] denotes the maximum size of an independent set
X of G[Vi] such that X ∩Bi = cgi . If Bi is a leaf, the definition of M [ci, Bi]
does not change. If Bi is an internal node, we check to see if the elements
of cgi contain an edge. If so, then M [ci, Bi] = −∞. If not, we have three
possible cases for M [ci, Bi]:

1. Bi is a Introduce Node. Let Bj be the child of Bi and let v ∈ V
such that Bi = Bj ∪ {v}. Since Bj ⊆ Bi, we note that there is only
one coloring of Bj compatible with ci, because we have to use the
same colors no matter the color of v. Let c∗j be the only coloring of Bj

compatible with ci.

Then

M [ci, Bi] = M [c∗j , Bj] +

{
1 if c(v) = green

0 otherwise

This corresponds to taking an optimal independent set on Vj , and
adding v if it has been colored green. It is important to understand
why adding v cannot create an edge in the independent set.

2. Bi is a Forget Node. Let Bj be the child of Bi and let v be Bi =
Bj \ {v}. We don’t add any vertex at the Bi level, so we take an
optimal solution at the Bj level.

Then
M [ci, Bi] = max

cj compatible with ci

M [cj , Bj]

Note that there are only two colorings of Bj compatible with ci, de-
pending on whether we add v or not.

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 103

3. Bi is a Join Node. Let Bl and Br be the children of Bi and recall that
Bi = Bl = Br. We can just take an independent set at the level Bl and
join it with an independent set at the level Br. In both cases, there is
only one compatible coloring, and we must avoid double counting the
green vertices.

So
M [ci, Bi] = M [ci, Bl] +M [ci, Br]− |cgi |

We are not going to demonstrate that these recurrences are correct.
However, it is important to be convinced that the case of join nodes works.
Taking the sum M [ci, Bl] + M [ci, Br] corresponds to taking a maximum
independent set on each side and combining them. How do you know that
you have not included two vertices sharing an edge by doing so? This is a
consequence of the properties of decompositions, which ensure that Bi is a
separator between these two sets.

11.9 MAX-CUT and nice decompositions

Recall that in MAX-CUT, we have a graph G = (V,E) and we want a
bipartition (V1, V2) of G such that |E(V1, V2)| is maximum. We parameterize
by tw(G) and suppose that we have a nice decomposition T = (VT , ET).

The idea of coloring is still useful here. Each vertex will have a color
1 or 2 representing its presence in V1 or V2. For a bag Bi, ci represents a
coloring of the vertices of Bi with 1 or 2. We writs c1

i = {v ∈ Bi : c(v) = 1}
and c2

i = {v ∈ Bi : c(v) = 2}. The notion of compatibility between colorings
remains the same.

For Bi ∈ VT and ci a coloring of Bi, we denote by M [ci, Bi] the maximum
number of traversing edges in a bipartition (V ′1 , V

′
2) of G[Vi] such that ci(v) =

1⇒ v ∈ V ′1 and ci(v) = 2⇒ v ∈ V ′2 .
If Bi is a leaf, it is easy to see that

M [ci, Bi] = |E(c1
i , c

2
i)|

Otherwise, assume that Bi is an internal node. We have three cases.

• Bi is a Introduce Node. Let Bj be the child of Bi and v the new
element of Bi. Let us denote by c∗j the only coloring of Bi compatible
with ci. The number of traversing edges is the same as before, in addi-
tion to the new traversing edges that include v. By the decomposition
properties, all neighbors of v in Vi must be in Bi.

CHAPTER 11. TREE DECOMPOSITION AND TREEWIDTH 104

So

M [ci, Bi] = M [c∗j , Bj] +

{
|N(v) ∩ c2

i | if ci(v) = 1

|N(v) ∩ c1
i | if ci(v) = 2

• Bi is a Forget Node. Let Bj be the child of Bi. In this case, we
don’t add a vertex to our bipartition and we can take the best solution
at the level of Bi which is compatible (note that there are only two).

So
M [ci, Bi] = max

cj compatible with ci

M [cj , Bj]

• Bi is a Join Node. Let Bl and Br be the children of Bi, remembering
that Bi = Bl = Br. It is enough to combine the bipartitions at the
level of Bl and Br, taking care not to count the same edge twice.

Then
M [ci, Bi] = M [ci, Bl] +M [ci, Br]− |E(c1

i , c
2
i)|

Chapter 12

Conclusion

We have seen various algorithmic solutions applicable when faced with an
NP-complete problem. One can either try to approximate it quickly, or to
extract a small parameter on which the exponential complexity depends.
Most of the problems encountered are toy problems. The usefulness of the
approaches presented here consists in making links between theory and real-
life computer problems.

An approximation is necessary when the data sets are very large, for
example in the millions, because in this case there is very little chance of
finding a small parameter. On the other hand, datasets in the order of
thousands can often be handled using exact FPT methods. This course has
been used to introduce you to the main techniques of algorithm development.
The challenges that await you are to know when to apply these techniques.
And if you ever undertake algorithmic research, a bigger challenge awaits
you: creating new techniques.

105

	Introduction
	What is an NP-complete problem?
	What are the prerequisites for this course

	I Approximation algorithms
	Approximation algorithms
	Approximating a minimization problem
	Approximating a maximization problem
	A first example with 3-SET-COVER
	Fundamental technique: finding a bound on OPT
	A 2-approximation for VERTEX-COVER
	One last simple example with MAX-SAT
	Can our analyses be refined?

	Approximation using the fundamental approach
	The Traveler Salesperson Problem, Metric Version
	Improvement to a 3/2-approximation
	k-center problem

	Greedy approach and local search
	Local search and MAX-CUT
	Greedy algorithm for SET-COVER

	Probabilistic algorithms
	Basics
	A probabilistic 1/2-approximation for MAX-CUT
	A probabilistic 7/8-approximation for MAX-3-SAT
	Derandomization

	Polynomial time approximation schemes (and KNAPSACK)
	Polynomial Time Approximation Scheme (PTAS)
	KNAPSACK Problem
	A PTAS for KNAPSACK

	Approximation and Linear Programming
	LP for approximation
	Relaxation by Integer Linear Programs (ILP)
	Application to VERTEX-COVER

	Packet delivery over a ring network
	Randomized Rounding

	II Algorithms with parameterized complexity
	Parameterized complexity
	Defining an FPT algorithm
	The canonical example: VERTEX-COVER
	Another example: MAX-CLIQUE

	Branching algorithms
	3-HITTING SET
	CLUSTER-EDITING
	More Intelligent Branching
	How to solve recurrences?
	An improved 3-HITTING-SET
	The consensus sequence

	Kernelisation
	Defining a kernel
	Kernelization of VERTEX-COVER
	A trivial kernel for MAX-3-SAT
	A kernel for MAX-SAT
	A kernel for EDGE-CLIQUE-COVER
	A kernel for VERTEX-COVER based on LPs
	Do all FPT problems have a kernel?

	Tree decomposition and treewidth
	Dynamic programming on trees
	Independent set in a tree
	VERTEX-COVER on a tree
	Assigning characters in a phylogeny

	Tree decomposition and treewidth
	Some examples
	Tree decomposition of a tree
	Tree decomposition of a cycle
	Tree decomposition of a clique

	Basic results
	Algorithms on tree decomposition
	Maximum independent set
	Nice decompositions
	MAX-INDSET and nice decomposition
	MAX-CUT and nice decompositions

	Conclusion

